These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27388506)

  • 21. Reinforced active middle ear implant fixation in incus vibroplasty.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Hagen R; Gummer AW; Schraven SP
    Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of a particle placed on the ossicles for microphoneless cochlear implant design.
    Kurt S; Ozsonmez AG
    Proc Inst Mech Eng H; 2021 Apr; 235(4):480-489. PubMed ID: 33297852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomical vibrations that implantable microphones must overcome.
    Jenkins HA; Pergola N; Kasic J
    Otol Neurotol; 2007 Aug; 28(5):579-88. PubMed ID: 17534199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical aspects in implantable microphones and hearing aids and development of a concept with a hydroacoustical transmission.
    Hüttenbrink KB; Zahnert TH; Bornitz M; Hofmann G
    Acta Otolaryngol; 2001 Jan; 121(2):185-9. PubMed ID: 11349775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies of MEMS Acoustic Sensors as Implantable Microphones for Totally Implantable Hearing-Aid Systems.
    Ko WH; Rui Zhang ; Ping Huang ; Jun Guo ; Xuesong Ye ; Young DJ; Megerian CA
    IEEE Trans Biomed Circuits Syst; 2009 Oct; 3(5):277-85. PubMed ID: 23853266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Active electronic hearing implants for middle and inner ear hearing loss--a new era in ear surgery. III: prospects for inner ear hearing loss].
    Zenner HP; Leysieffer H
    HNO; 1997 Oct; 45(10):769-74. PubMed ID: 9445849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A technical review and evaluation of implantable sensors for hearing devices.
    Calero D; Paul S; Gesing A; Alves F; Cordioli JA
    Biomed Eng Online; 2018 Feb; 17(1):23. PubMed ID: 29433516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concept and Evaluation of a New Piezoelectric Transducer for an Implantable Middle Ear Hearing Device.
    Liu H; Cheng J; Yang J; Rao Z; Cheng G; Yang S; Huang X; Wang M
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of an implantable seismic sensor placed on the ossicular chain.
    Sachse M; Hortschitz W; Stifter M; Steiner H; Sauter T
    Med Eng Phys; 2013 Oct; 35(10):1399-405. PubMed ID: 23810385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cold deformation elements for attaching an implantable hearing aid transducer to ear ossicles or perilymph].
    Lehner R; Maassen MM; Leysieffer H; Plester D; Zenner HP
    HNO; 1998 Jan; 46(1):27-37. PubMed ID: 9539053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.
    Yip M; Jin R; Nakajima HH; Stankovic KM; Chandrakasan AP
    IEEE J Solid-State Circuits; 2015 Jan; 50(1):214-229. PubMed ID: 26251552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The Esteem hearing implant by Envoy Medical].
    Altuna Mariezcurrena X; Algaba Guimerá J; Bolinaga Zubizarreta U
    Acta Otorrinolaringol Esp; 2008 Nov; 59 Suppl 1():33-4. PubMed ID: 19094898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel implantable hearing system with direct acoustic cochlear stimulation.
    Häusler R; Stieger C; Bernhard H; Kompis M
    Audiol Neurootol; 2008; 13(4):247-56. PubMed ID: 18259077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New total ossicular replacement prostheses with a resilient joint: experimental data from human temporal bones.
    Arechvo I; Bornitz M; Lasurashvili N; Zahnert T; Beleites T
    Otol Neurotol; 2012 Jan; 33(1):60-6. PubMed ID: 22143295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A laboratory study on a capacitive displacement sensor as an implant microphone in totally implant cochlear hearing aid systems.
    Huang P; Guo J; Megerian CA; Young DJ; Ko WH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5692-5. PubMed ID: 18003304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A totally implantable hearing system--design and function characterization in 3D computational model and temporal bones.
    Gan RZ; Dai C; Wang X; Nakmali D; Wood MW
    Hear Res; 2010 May; 263(1-2):138-44. PubMed ID: 19772909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices.
    Gesing AL; Alves FDP; Paul S; Cordioli JA
    Sci Rep; 2018 Mar; 8(1):3920. PubMed ID: 29500435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Adjusting the geometry of implantable hearing aid components to human temporal bone. II: Microphone].
    Maassen MM; Lehner RL; Müller G; Reischl G; Lüdtke R; Leysieffer H; Zenner HP
    HNO; 1997 Oct; 45(10):847-54. PubMed ID: 9445857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.