These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27388532)

  • 1. Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies.
    Cui Q; Hernandez R; Mason SE; Frauenheim T; Pedersen JA; Geiger F
    J Phys Chem B; 2016 Aug; 120(30):7297-306. PubMed ID: 27388532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.
    Qu X; Brame J; Li Q; Alvarez PJ
    Acc Chem Res; 2013 Mar; 46(3):834-43. PubMed ID: 22738389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality.
    Zelzer M; Ulijn RV
    Chem Soc Rev; 2010 Sep; 39(9):3351-7. PubMed ID: 20676412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Nano-Bio Interactions and the Corresponding Biological Responses.
    Tian X; Chong Y; Ge C
    Front Chem; 2020; 8():446. PubMed ID: 32587847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-graining errors and numerical optimization using a relative entropy framework.
    Chaimovich A; Shell MS
    J Chem Phys; 2011 Mar; 134(9):094112. PubMed ID: 21384955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.
    Chen R; Riviere JE
    Adv Exp Med Biol; 2017; 947():207-253. PubMed ID: 28168670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction.
    Chen R; Riviere JE
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 May; 9(3):. PubMed ID: 27863136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conquest of middle-earth: combining top-down and bottom-up nanofabrication for constructing nanoparticle based devices.
    Diaz Fernandez YA; Gschneidtner TA; Wadell C; Fornander LH; Lara Avila S; Langhammer C; Westerlund F; Moth-Poulsen K
    Nanoscale; 2014 Dec; 6(24):14605-16. PubMed ID: 25208687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fullerene nanoarchitectonics: from zero to higher dimensions.
    Shrestha LK; Ji Q; Mori T; Miyazawa K; Yamauchi Y; Hill JP; Ariga K
    Chem Asian J; 2013 Aug; 8(8):1662-79. PubMed ID: 23589223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals Perspective on Coarse-Graining: Progress toward Solving Representability and Transferability Problems.
    Dunn NJ; Foley TT; Noid WG
    Acc Chem Res; 2016 Dec; 49(12):2832-2840. PubMed ID: 27993007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding and Designing the Gold-Bio Interface: Insights from Simulations.
    Charchar P; Christofferson AJ; Todorova N; Yarovsky I
    Small; 2016 May; 12(18):2395-418. PubMed ID: 27007031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoengineered Templated Polymer Particles: Navigating the Biological Realm.
    Cui J; Richardson JJ; Björnmalm M; Faria M; Caruso F
    Acc Chem Res; 2016 Jun; 49(6):1139-48. PubMed ID: 27203418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales.
    Padding JT; Louis AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031402. PubMed ID: 17025630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Nanoparticles: Understanding and Designing the Gold-Bio Interface: Insights from Simulations (Small 18/2016).
    Charchar P; Christofferson AJ; Todorova N; Yarovsky I
    Small; 2016 May; 12(18):2394. PubMed ID: 27151827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-bio effects: interaction of nanomaterials with cells.
    Cheng LC; Jiang X; Wang J; Chen C; Liu RS
    Nanoscale; 2013 May; 5(9):3547-69. PubMed ID: 23532468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing risk assessment of engineered nanomaterials: application of computational approaches.
    Gajewicz A; Rasulev B; Dinadayalane TC; Urbaszek P; Puzyn T; Leszczynska D; Leszczynski J
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1663-93. PubMed ID: 22664229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies.
    Salerno KM; Agrawal A; Perahia D; Grest GS
    Phys Rev Lett; 2016 Feb; 116(5):058302. PubMed ID: 26894738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.
    Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA
    J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the dawn of nanoecotoxicological research.
    Kahru A; Ivask A
    Acc Chem Res; 2013 Mar; 46(3):823-33. PubMed ID: 23148404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Chemically Resolved Computer Simulations of Dynamics and Remodeling of Biological Membranes.
    Soares TA; Vanni S; Milano G; Cascella M
    J Phys Chem Lett; 2017 Aug; 8(15):3586-3594. PubMed ID: 28707901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.