These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 27388658)
1. The hydrophilicity vs. ion interaction selectivity plot revisited: The effect of mobile phase pH and buffer concentration on hydrophilic interaction liquid chromatography selectivity behavior. Iverson CD; Gu X; Lucy CA J Chromatogr A; 2016 Aug; 1458():82-9. PubMed ID: 27388658 [TBL] [Abstract][Full Text] [Related]
2. A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography. Ibrahim ME; Liu Y; Lucy CA J Chromatogr A; 2012 Oct; 1260():126-31. PubMed ID: 22980645 [TBL] [Abstract][Full Text] [Related]
3. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography. McCalley DV J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167 [TBL] [Abstract][Full Text] [Related]
4. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography. Qiao L; Li H; Shan Y; Wang S; Shi X; Lu X; Xu G J Chromatogr A; 2014 Feb; 1330():40-50. PubMed ID: 24484692 [TBL] [Abstract][Full Text] [Related]
5. Study of retention and peak shape in hydrophilic interaction chromatography over a wide pH range. McCalley DV J Chromatogr A; 2015 Sep; 1411():41-9. PubMed ID: 26275863 [TBL] [Abstract][Full Text] [Related]
6. Effect of nature of electrolytes on retention and selectivity in hydrophilic interaction liquid chromatography. Craven CB; Joyce CW; Lucy CA J Chromatogr A; 2019 Jan; 1584():80-86. PubMed ID: 30579641 [TBL] [Abstract][Full Text] [Related]
7. Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase. Shen A; Guo Z; Cai X; Xue X; Liang X J Chromatogr A; 2012 Mar; 1228():175-82. PubMed ID: 22099229 [TBL] [Abstract][Full Text] [Related]
8. Extent of the influence of phosphate buffer and ionic liquids on the reduction of the silanol effect in a C18 stationary phase. Carda-Broch S; García-Alvarez-Coque MC; Ruiz-Angel MJ J Chromatogr A; 2018 Jul; 1559():112-117. PubMed ID: 28602502 [TBL] [Abstract][Full Text] [Related]
9. A study of the re-equilibration of hydrophilic interaction columns with a focus on viability for use in two-dimensional liquid chromatography. Seidl C; Bell DS; Stoll DR J Chromatogr A; 2019 Oct; 1604():460484. PubMed ID: 31488293 [TBL] [Abstract][Full Text] [Related]
11. Functionalization using polymer or silane? A practical test method to characterize hydrophilic interaction chromatography phases in terms of their functionalization method. Ikegami T; Taniguchi A; Okada T; Horie K; Arase S; Ikegami Y J Chromatogr A; 2021 Feb; 1638():461850. PubMed ID: 33482613 [TBL] [Abstract][Full Text] [Related]
12. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? McCalley DV J Chromatogr A; 2007 Nov; 1171(1-2):46-55. PubMed ID: 17931636 [TBL] [Abstract][Full Text] [Related]
13. Retention behaviour of imidazolium ionic liquid cations on 1.7 μm ethylene bridged hybrid silica column using acetonitrile-rich and water-rich mobile phases. Orentienė A; Olšauskaitė V; Vičkačkaitė V; Padarauskas A J Chromatogr A; 2011 Sep; 1218(39):6884-91. PubMed ID: 21871632 [TBL] [Abstract][Full Text] [Related]
14. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry. Xiong X; Liu Y Talanta; 2016 Apr; 150():493-502. PubMed ID: 26838435 [TBL] [Abstract][Full Text] [Related]
15. Separation of therapeutic peptides with cyclofructan and glycopeptide based columns in hydrophilic interaction liquid chromatography. Shu Y; Lang JC; Breitbach ZS; Qiu H; Smuts JP; Kiyono-Shimobe M; Yasuda M; Armstrong DW J Chromatogr A; 2015 Apr; 1390():50-61. PubMed ID: 25773727 [TBL] [Abstract][Full Text] [Related]
16. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode. Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557 [TBL] [Abstract][Full Text] [Related]
17. Screening of the most relevant parameters for method development in ultra-high performance hydrophilic interaction chromatography. Periat A; Debrus B; Rudaz S; Guillarme D J Chromatogr A; 2013 Mar; 1282():72-83. PubMed ID: 23411147 [TBL] [Abstract][Full Text] [Related]
18. Study of the retention behavior of small polar molecules on different types of stationary phases used in hydrophilic interaction liquid chromatography. Vlčková H; Ježková K; Stětková K; Tomšíková H; Solich P; Nováková L J Sep Sci; 2014 Jun; 37(11):1297-307. PubMed ID: 24648311 [TBL] [Abstract][Full Text] [Related]
19. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode. Wu J; Bicker W; Lindner W J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Aral H; Çelik KS; Altındağ R; Aral T Talanta; 2017 Nov; 174():703-714. PubMed ID: 28738646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]