These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27388915)

  • 1. Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles.
    Kenesei K; Murali K; Czéh Á; Piella J; Puntes V; Madarász E
    J Nanobiotechnology; 2016 Jul; 14(1):55. PubMed ID: 27388915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of nanoparticle uptake and impact in murine lung, liver and kidney tissue slices.
    Bartucci R; Paramanandana A; Boersma YL; Olinga P; Salvati A
    Nanotoxicology; 2020 Aug; 14(6):847-865. PubMed ID: 32536243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penetration of pegylated gold nanoparticles through rat placental barrier.
    Tsyganova NA; Khairullin RM; Terentyuk GS; Khlebtsov BN; Bogatyrev VA; Dykman LA; Erykov SN; Khlebtsov NG
    Bull Exp Biol Med; 2014 Jul; 157(3):383-5. PubMed ID: 25065320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
    Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery.
    Kulkarni SA; Feng SS
    Pharm Res; 2013 Oct; 30(10):2512-22. PubMed ID: 23314933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between Fluorescence Imaging and Elemental Analysis to Determine Biodistribution of Inorganic Nanoparticles with Strong Light Absorption.
    Tamarov K; Wang JT; Kari J; Happonen E; Vesavaara I; Niemelä M; Perämäki P; Al-Jamal KT; Xu W; Lehto VP
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40392-40400. PubMed ID: 34405988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of Systemically Administered Nanoparticles Reveals a Size-Dependent Effect Immediately following Cardiac Ischaemia-Reperfusion Injury.
    Lundy DJ; Chen KH; Toh EK; Hsieh PC
    Sci Rep; 2016 May; 6():25613. PubMed ID: 27161857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of nanoparticle and fine particle uptake by Daphnia magna.
    Rosenkranz P; Chaudhry Q; Stone V; Fernandes TF
    Environ Toxicol Chem; 2009 Oct; 28(10):2142-9. PubMed ID: 19588999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles can cross mouse placenta and induce trophoblast apoptosis.
    Huang JP; Hsieh PC; Chen CY; Wang TY; Chen PC; Liu CC; Chen CC; Chen CP
    Placenta; 2015 Dec; 36(12):1433-41. PubMed ID: 26526105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles exhibit greater accumulation in kidney glomeruli during experimental glomerular kidney disease.
    Liu GW; Pippin JW; Eng DG; Lv S; Shankland SJ; Pun SH
    Physiol Rep; 2020 Aug; 8(15):e14545. PubMed ID: 32786069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells.
    Murali K; Kenesei K; Li Y; Demeter K; Környei Z; Madarász E
    Nanoscale; 2015 Mar; 7(9):4199-210. PubMed ID: 25673096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barrier capacity of human placenta for nanosized materials.
    Wick P; Malek A; Manser P; Meili D; Maeder-Althaus X; Diener L; Diener PA; Zisch A; Krug HF; von Mandach U
    Environ Health Perspect; 2010 Mar; 118(3):432-6. PubMed ID: 20064770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro.
    Johnston HJ; Semmler-Behnke M; Brown DM; Kreyling W; Tran L; Stone V
    Toxicol Appl Pharmacol; 2010 Jan; 242(1):66-78. PubMed ID: 19799923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.
    Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY
    J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells.
    Varela JA; Bexiga MG; Åberg C; Simpson JC; Dawson KA
    J Nanobiotechnology; 2012 Sep; 10():39. PubMed ID: 23006133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor accumulation of NIR fluorescent PEG-PLA nanoparticles: impact of particle size and human xenograft tumor model.
    Schädlich A; Caysa H; Mueller T; Tenambergen F; Rose C; Göpferich A; Kuntsche J; Mäder K
    ACS Nano; 2011 Nov; 5(11):8710-20. PubMed ID: 21970766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue.
    Nance EA; Woodworth GF; Sailor KA; Shih TY; Xu Q; Swaminathan G; Xiang D; Eberhart C; Hanes J
    Sci Transl Med; 2012 Aug; 4(149):149ra119. PubMed ID: 22932224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental bio-imaging of PEGylated NaYF
    Li Q; Wang Z; Chen Y; Zhang G
    Metallomics; 2017 Aug; 9(8):1150-1156. PubMed ID: 28745365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent magnetic nanoparticles with specific targeting functions for combinded targeting, optical imaging and magnetic resonance imaging.
    Chen YC; Chang WH; Wang SJ; Hsieh WY
    J Biomater Sci Polym Ed; 2012; 23(15):1903-22. PubMed ID: 22024467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an ex Vivo Human Placental Perfusion Model.
    Grafmueller S; Manser P; Diener L; Diener PA; Maeder-Althaus X; Maurizi L; Jochum W; Krug HF; Buerki-Thurnherr T; von Mandach U; Wick P
    Environ Health Perspect; 2015 Dec; 123(12):1280-6. PubMed ID: 25956008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.