These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27388969)

  • 21. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multicompartmental Janus microbeads from branched polymers by single-emulsion droplet microfluidics.
    Chen Y; Nurumbetov G; Chen R; Ballard N; Bon SA
    Langmuir; 2013 Oct; 29(41):12657-62. PubMed ID: 24040786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Belousov-Zhabotinsky Reaction in Thermoresponsive Core-Shell Hydrogel Microspheres with a Tris(2,2'-bipyridyl)ruthenium Catalyst in the Core.
    Inui K; Watanabe T; Minato H; Matsui S; Ishikawa K; Yoshida R; Suzuki D
    J Phys Chem B; 2020 May; 124(18):3828-3835. PubMed ID: 32293889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using light to guide the self-sustained motion of active gels.
    Dayal P; Kuksenok O; Balazs AC
    Langmuir; 2009 Apr; 25(8):4298-301. PubMed ID: 19281156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of PDMS-Based Microfluidics on Belousov-Zhabotinsky Chemical Oscillators.
    Sheehy J; Hunter I; Moustaka ME; Aghvami SA; Fahmy Y; Fraden S
    J Phys Chem B; 2020 Dec; 124(51):11690-11698. PubMed ID: 33315410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-lasting dashed waves in a reactive microemulsion.
    Carballido-Landeira J; Berenstein I; Taboada P; Mosquera V; Vanag VK; Epstein IR; Pérez-Villar V; Muñuzuri AP
    Phys Chem Chem Phys; 2008 Feb; 10(8):1094-6. PubMed ID: 18270609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Belousov-Zhabotinsky substrate concentrations on autonomous oscillation of polymer chains with Fe(bpy)3 catalyst.
    Hara Y; Mayama H; Fujimoto K
    J Phys Chem B; 2014 Jun; 118(24):6931-6. PubMed ID: 24853126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic approach to the formation of internally porous polymer particles by solvent extraction.
    Watanabe T; G Lopez C; Douglas JF; Ono T; Cabral JT
    Langmuir; 2014 Mar; 30(9):2470-9. PubMed ID: 24568261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration.
    Moghaddam SZ; Thormann E
    J Colloid Interface Sci; 2016 Mar; 465():67-75. PubMed ID: 26641567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of solvent and salt concentration on the alignment properties of acrylamide copolymer gels for the measurement of RDC.
    Trigo-Mouriño P; Navarro-Vázquez A; Sánchez-Pedregal VM
    Magn Reson Chem; 2012 Dec; 50 Suppl 1():S29-37. PubMed ID: 23280658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery.
    Vasiliauskas R; Liu D; Cito S; Zhang H; Shahbazi MA; Sikanen T; Mazutis L; Santos HA
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14822-32. PubMed ID: 26098382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.
    Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA
    Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles.
    Hickey RJ; Haynes AS; Kikkawa JM; Park SJ
    J Am Chem Soc; 2011 Feb; 133(5):1517-25. PubMed ID: 21208004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical and computational modeling of self-oscillating polymer gels.
    Yashin VV; Balazs AC
    J Chem Phys; 2007 Mar; 126(12):124707. PubMed ID: 17411152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uniform double-walled polymer microspheres of controllable shell thickness.
    Berkland C; Pollauf E; Pack DW; Kim K
    J Control Release; 2004 Apr; 96(1):101-11. PubMed ID: 15063033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration.
    Sciascia L; Rossi F; Sbriziolo C; Liveri ML; Varsalona R
    Phys Chem Chem Phys; 2010 Oct; 12(37):11674-82. PubMed ID: 20714482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal switch of oscillation frequency in Belousov-Zhabotinsky liquid marbles.
    Adamatzky A; Fullarton C; Phillips N; De Lacy Costello B; Draper TC
    R Soc Open Sci; 2019 Apr; 6(4):190078. PubMed ID: 31183147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of water-containing polymer microcapsules by the complex emulsion/solvent evaporation technique. Effect of process variables on the microcapsule size distribution.
    Kentepozidou A; Kiparissides C
    J Microencapsul; 1995; 12(6):627-38. PubMed ID: 8558385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the formation mechanism for thermoresponsive-type coacervate with functional copolymers consisting of N-isopropylacrylamide and 2-hydroxyisopropylacrylamide.
    Maeda T; Takenouchi M; Yamamoto K; Aoyagi T
    Biomacromolecules; 2006 Jul; 7(7):2230-6. PubMed ID: 16827592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.