These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27389321)

  • 1. Functionally graded porous scaffolds made of Ti-based agglomerates.
    Nazari KA; Hilditch T; Dargusch MS; Nouri A
    J Mech Behav Biomed Mater; 2016 Oct; 63():157-163. PubMed ID: 27389321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications.
    Soro N; Attar H; Brodie E; Veidt M; Molotnikov A; Dargusch MS
    J Mech Behav Biomed Mater; 2019 Sep; 97():149-158. PubMed ID: 31121433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and mechanical properties of additive manufactured porous Ti-33Nb-4Sn scaffolds for orthopaedic applications.
    Cheng X; Liu S; Chen C; Chen W; Liu M; Li R; Zhang X; Zhou K
    J Mater Sci Mater Med; 2019 Aug; 30(8):91. PubMed ID: 31388766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.
    Li F; Li J; Xu G; Liu G; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application.
    Li X; Wang CT; Zhang WG; Li YC
    Proc Inst Mech Eng H; 2009 Feb; 223(2):173-8. PubMed ID: 19278194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.
    He G; Liu P; Tan Q; Jiang G
    J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium.
    Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y
    J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres.
    Zou C; Zhang E; Li M; Zeng S
    J Mater Sci Mater Med; 2008 Jan; 19(1):401-5. PubMed ID: 17607525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials.
    Zhang XY; Fang G; Leeflang S; Zadpoor AA; Zhou J
    Acta Biomater; 2019 Jan; 84():437-452. PubMed ID: 30537537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique].
    Xiong Y; Chen P; Sun J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):247-50. PubMed ID: 22616167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Ti/HA composite and functionally graded implant by three-dimensional printing.
    Qian C; Zhang F; Sun J
    Biomed Mater Eng; 2015; 25(2):127-36. PubMed ID: 25813951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility.
    Liu J; Ruan J; Chang L; Yang H; Ruan W
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():503-512. PubMed ID: 28576015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys.
    Jian YT; Yang Y; Tian T; Stanford C; Zhang XP; Zhao K
    PLoS One; 2015; 10(6):e0128138. PubMed ID: 26047515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.
    Caparrós C; Guillem-Martí J; Molmeneu M; Punset M; Calero JA; Gil FJ
    J Mech Behav Biomed Mater; 2014 Nov; 39():79-86. PubMed ID: 25108271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive macroporous titanium implants highly interconnected.
    Caparrós C; Ortiz-Hernandez M; Molmeneu M; Punset M; Calero JA; Aparicio C; Fernández-Fairén M; Perez R; Gil FJ
    J Mater Sci Mater Med; 2016 Oct; 27(10):151. PubMed ID: 27582071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formability and mechanical properties of porous titanium produced by a moldless process.
    Naito Y; Bae J; Tomotake Y; Hamada K; Asaoka K; Ichikawa T
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1090-4. PubMed ID: 23559484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of a novel porous titanium scaffold with 3D hierarchical porous structures.
    Chen Y; Feng B; Zhu Y; Weng J; Wang J; Lu X
    J Mater Sci Mater Med; 2011 Apr; 22(4):839-44. PubMed ID: 21431352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.