These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27389333)

  • 1. Reclassification of the Strains with Low G+C Contents of DNA belonging to the Genus Gluconobacter ASAI 1935 (Acetobacteraceae).
    Tanaka M; Murakami S; Shinke R; Aoki K
    Biosci Biotechnol Biochem; 1999; 63(6):989-92. PubMed ID: 27389333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym of Gluconobacter cerinus Yamada and Akita 1984.
    Katsura K; Yamada Y; Uchimura T; Komagata K
    Int J Syst Evol Microbiol; 2002 Sep; 52(Pt 5):1635-1640. PubMed ID: 12361267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences.
    Takahashi M; Yukphan P; Yamada Y; Suzuki K; Sakane T; Nakagawa Y
    J Gen Appl Microbiol; 2006 Jun; 52(3):187-93. PubMed ID: 16960335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of strains assigned to the genus Gluconobacter Asai 1935 based on the sequence and the restriction analyses of the 16S-23S rDNA internal transcribed spacer regions.
    Yukphan P; Potacharoen W; Nakagawa Y; Tanticharoen M; Yamada Y
    J Gen Appl Microbiol; 2004 Feb; 50(1):9-15. PubMed ID: 15057706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the alpha-Proteobacteria.
    Tanasupawat S; Thawai C; Yukphan P; Moonmangmee D; Itoh T; Adachi O; Yamada Y
    J Gen Appl Microbiol; 2004 Jun; 50(3):159-67. PubMed ID: 15486825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter.
    Yamada Y; Hosono R; Lisdyanti P; Widyastuti Y; Saono S; Uchimura T; Komagata K
    J Gen Appl Microbiol; 1999 Feb; 45(1):23-28. PubMed ID: 12501398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic position of Gluconobacter species as a coherent cluster separated from all Acetobacter species on the basis of 16S ribosomal RNA sequences.
    Sievers M; Gaberthüel C; Boesch C; Ludwig W; Teuber M
    FEMS Microbiol Lett; 1995 Feb; 126(2):123-6. PubMed ID: 7705603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-identification of Gluconobacter strains based on restriction analysis of 16S-23S rDNA internal transcribed spacer regions.
    Yukphan P; Malimas T; Takahashi M; Potacharoen W; Busabun T; Tanasupawat S; Nakagawa Y; Tanticharoen M; Yamada Y
    J Gen Appl Microbiol; 2004 Aug; 50(4):189-95. PubMed ID: 15754244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gluconobacter japonicus sp. nov., an acetic acid bacterium in the Alphaproteobacteria.
    Malimas T; Yukphan P; Takahashi M; Muramatsu Y; Kaneyasu M; Potacharoen W; Tanasupawat S; Nakagawa Y; Tanticharoen M; Yamada Y
    Int J Syst Evol Microbiol; 2009 Mar; 59(Pt 3):466-71. PubMed ID: 19244423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level.
    Yamada Y; Hoshino K; Ishikawa T
    Biosci Biotechnol Biochem; 1997 Aug; 61(8):1244-51. PubMed ID: 9301103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures.
    Moonmangmee D; Adachi O; Ano Y; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2000 Nov; 64(11):2306-15. PubMed ID: 11193396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand.
    Toyama H; Soemphol W; Moonmangmee D; Adachi O; Matsushita K
    Biosci Biotechnol Biochem; 2005 Jun; 69(6):1120-9. PubMed ID: 15973043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption.
    Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K
    Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity of strains assigned to Gluconobacter frateurii Mason and Claus 1989 based on restriction analysis of 16S-23S rDNA internal transcribed spacer regions.
    Malimas T; Yukphan P; Takahashi M; Potacharoen W; Tanasupawat S; Nakagawa Y; Tanticharoen M; Yamada Y
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):684-90. PubMed ID: 16556986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Gluconobacter cerinus CGMCC 1.110 for direct 2-keto-L-gulonic acid production.
    Qin Z; Chen Y; Yu S; Chen J; Zhou J
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):153-162. PubMed ID: 36445390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol.
    Sugiyama M; Suzuki S; Tonouchi N; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Mar; 67(3):584-91. PubMed ID: 12723607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must.
    Sainz F; Mas A; Torija MJ
    Genome Announc; 2016 Jun; 4(3):. PubMed ID: 27365351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The plant pathogen Gluconobacter cerinus strain CDF1 is beneficial to the fruit fly Bactrocera dorsalis.
    He M; Jiang J; Cheng D
    AMB Express; 2017 Nov; 7(1):207. PubMed ID: 29150728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Single-Nucleotide Insertion in a Drug Transporter Gene Induces a Thermotolerance Phenotype in Gluconobacter frateurii by Increasing the NADPH/NADP
    Matsumoto N; Hattori H; Matsutani M; Matayoshi C; Toyama H; Kataoka N; Yakushi T; Matsushita K
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.