These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 27389505)

  • 1. cDNA Subtractive Cloning of Genes Expressed during Early Stage of Appressorium Formation by Magnaporthe grisea.
    Kamakura T; Xiao JZ; Choi WB; Kochi T; Yamaguchi S; Teraoka T; Yamaguchi I
    Biosci Biotechnol Biochem; 1999; 63(8):1407-13. PubMed ID: 27389505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representative appressorium stage cDNA library of Magnaporthe grisea.
    Lu JP; Liu TB; Yu XY; Lin FC
    J Zhejiang Univ Sci B; 2005 Feb; 6(2):132-6. PubMed ID: 15633249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation.
    Kamakura T; Yamaguchi S; Saitoh K; Teraoka T; Yamaguchi I
    Mol Plant Microbe Interact; 2002 May; 15(5):437-44. PubMed ID: 12036274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization.
    Lu JP; Liu TB; Lin FC
    FEMS Microbiol Lett; 2005 Apr; 245(1):131-7. PubMed ID: 15796990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae.
    Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR
    Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment.
    Liu ZM; Kolattukudy PE
    J Bacteriol; 1999 Jun; 181(11):3571-7. PubMed ID: 10348871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP Restores Appressorium Formation Inhibited by Polyamines in Magnaporthe grisea.
    Choi WB; Kang SH; Lee YW; Lee YH
    Phytopathology; 1998 Jan; 88(1):58-62. PubMed ID: 18945000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea.
    Lee YH; Dean RA
    Plant Cell; 1993 Jun; 5(6):693-700. PubMed ID: 12271080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Target-Site-Specific Screening System for Antifungal Compounds on Appressorium Formation in Magnaporthe grisea.
    Oh HS; Lee YH
    Phytopathology; 2000 Oct; 90(10):1162-8. PubMed ID: 18944481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea.
    Takano Y; Choi W; Mitchell TK; Okuno T; Dean RA
    Mol Plant Pathol; 2003 Sep; 4(5):337-46. PubMed ID: 20569394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development.
    Choi W; Dean RA
    Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel gene MGA1 is required for appressorium formation in Magnaporthe grisea.
    Gupta A; Chattoo BB
    Fungal Genet Biol; 2007 Nov; 44(11):1157-69. PubMed ID: 17462923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of cDNA array for studying the gene expression profile of mature appressoria of Magnaporthe grisea.
    Jin QC; Dong HT; Peng YL; Chen BS; Shao J; Deng Y; Dai CE; Fang YQ; Lou YC; Li YZ; Li DB
    J Zhejiang Univ Sci B; 2007 Feb; 8(2):88-97. PubMed ID: 17266183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S; Ahn IP; Rho HS; Lee YH
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of a synthetic peptide combinatorial library to identify inhibitors of the appressorium formation in Magnaporthe oryzae.
    Rebollar A; Marcos JF; López-García B
    Biochem Biophys Res Commun; 2014 Nov; 454(1):1-6. PubMed ID: 25450357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of cDNA library of Magnaporthe grisea with magnetic bead].
    Feng X; Xiaoli W; Dewen Q
    Wei Sheng Wu Xue Bao; 2008 Jun; 48(6):806-10. PubMed ID: 18720847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of genes expressed during rice-Magnaporthe grisea interactions.
    Kim S; Ahn IP; Lee YH
    Mol Plant Microbe Interact; 2001 Nov; 14(11):1340-6. PubMed ID: 11763134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea.
    Weber RW; Wakley GE; Thines E; Talbot NJ
    Protoplasma; 2001; 216(1-2):101-12. PubMed ID: 11732192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.