BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 27389612)

  • 1. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition.
    Qajar J; Arns CH
    J Contam Hydrol; 2016 Sep; 192():60-86. PubMed ID: 27389612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties.
    Qajar J; Arns CH
    J Contam Hydrol; 2017 Sep; 204():11-27. PubMed ID: 28822588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration and Erosion of Rock Matrix Bordering a Carbonate-Rich Shale Fracture.
    Deng H; Voltolini M; Molins S; Steefel C; DePaolo D; Ajo-Franklin J; Yang L
    Environ Sci Technol; 2017 Aug; 51(15):8861-8868. PubMed ID: 28682076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Mineral Dissolution/Precipitation and CO
    Xu R; Li R; Ma J; He D; Jiang P
    Acc Chem Res; 2017 Sep; 50(9):2056-2066. PubMed ID: 28812872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the challenges of greyscale-based quantifications using X-ray computed microtomography.
    Zhang Y; Mostaghimi P; Armstrong RT
    J Microsc; 2019 Aug; 275(2):82-96. PubMed ID: 31077363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions.
    Menke HP; Bijeljic B; Andrew MG; Blunt MJ
    Environ Sci Technol; 2015 Apr; 49(7):4407-14. PubMed ID: 25738415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution.
    Gouze P; Luquot L
    J Contam Hydrol; 2011 Mar; 120-121():45-55. PubMed ID: 20797806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: Experiments and modelling.
    Poonoosamy J; Kosakowski G; Van Loon LR; Mäder U
    J Contam Hydrol; 2015; 177-178():1-17. PubMed ID: 25805363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore scale image analysis for petrophysical modelling.
    Pal AK; Garia S; Ravi K; Nair AM
    Micron; 2022 Mar; 154():103195. PubMed ID: 35051800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties.
    Bauer D; Youssef S; Han M; Bekri S; Rosenberg E; Fleury M; Vizika O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011133. PubMed ID: 21867139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore-scale Imaging and Characterization of Hydrocarbon Reservoir Rock Wettability at Subsurface Conditions Using X-ray Microtomography.
    Alhammadi AM; AlRatrout A; Bijeljic B; Blunt MJ
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30394374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of type of ion and temperature on fines migration induced by mineral reactions during water injection into carbonate rocks.
    Almutairi A; Wang Y; Le-Hussain F
    J Environ Manage; 2023 Sep; 342():118193. PubMed ID: 37270981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reservoir condition pore-scale imaging of multiple fluid phases using X-ray microtomography.
    Andrew M; Bijeljic B; Blunt M
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaporite caprock integrity: an experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure.
    Smith MM; Sholokhova Y; Hao Y; Carroll SA
    Environ Sci Technol; 2013 Jan; 47(1):262-8. PubMed ID: 22831758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution-After-Precipitation (DAP): a simple microfluidic approach for studying carbonate rock dissolution and multiphase reactive transport mechanisms.
    Xu J; Balhoff MT
    Lab Chip; 2022 Oct; 22(21):4205-4223. PubMed ID: 36172900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved method for effective rock microporosity estimation using X-ray microtomography.
    Cid HE; Carrasco-Núñez G; Manea VC
    Micron; 2017 Jun; 97():11-21. PubMed ID: 28292699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography.
    Al-Khulaifi Y; Lin Q; Blunt MJ; Bijeljic B
    Environ Sci Technol; 2017 Apr; 51(7):4108-4116. PubMed ID: 28287717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on the Dissolution Characteristics and Microstructure of Carbonate Rocks under the Action of Thermal-Hydraulic-Chemical Coupling.
    Meng J; Chen S; Wang J; Chen Z; Zhang J
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Pore-scale Reservoir-condition Imaging of Reaction in Carbonates Using Synchrotron Fast Tomography.
    Menke HP; Andrew MG; Vila-Comamala J; Rau C; Blunt MJ; Bijeljic B
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.