These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 27389817)

  • 41. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment.
    Zhang X; Wang J; Dong XX; Lv YK
    Chemosphere; 2020 Mar; 242():125144. PubMed ID: 31669994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced photocatalytic performance in Bi2WO6/SnS heterostructures: Facile synthesis, influencing factors and mechanism of the photocatalytic process.
    Tang R; Su H; Sun Y; Zhang X; Li L; Liu C; Zeng S; Sun D
    J Colloid Interface Sci; 2016 Mar; 466():388-99. PubMed ID: 26752434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.
    Pieber B; Shalom M; Antonietti M; Seeberger PH; Gilmore K
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9976-9979. PubMed ID: 29377383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and characterization of ZnTiO
    Chen F; Yu C; Wei L; Fan Q; Ma F; Zeng J; Yi J; Yang K; Ji H
    Sci Total Environ; 2020 Mar; 706():136026. PubMed ID: 31841856
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants.
    Colmenares JC
    ChemSusChem; 2014 Jun; 7(6):1512-27. PubMed ID: 24965345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Laser-enhanced photocatalytic degradation of organic pollutants from water using ZnO semiconductor catalyst.
    Gondal MA; Sayeed MN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jan; 43(1):70-7. PubMed ID: 18161560
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An emerging photocatalyst for wastewater remediation: a mini-review on CaCu
    Saqib NU; Shah I; Adnan R
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40403-40414. PubMed ID: 35347628
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent progress in semiconductor/graphene photocatalysts: synthesis, photocatalytic applications, and challenges.
    Ahmed MA; Mohamed AA
    RSC Adv; 2022 Dec; 13(1):421-439. PubMed ID: 36605650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Construction of a 0D/1D composite based on Au nanoparticles/CuBi
    Shi W; Li M; Ren H; Guo F; Huang X; Shi Y; Tang Y
    Beilstein J Nanotechnol; 2019; 10():1360-1367. PubMed ID: 31355104
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues-evaluation of the long-term stability of the photocatalytic activity of TiO2.
    Doll TE; Frimmel FH
    Water Res; 2005 Mar; 39(5):847-54. PubMed ID: 15743630
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comprehensive review on the use of second generation TiO
    Uyguner Demirel CS; Birben NC; Bekbolet M
    Chemosphere; 2018 Nov; 211():420-448. PubMed ID: 30077938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol.
    Li SX; Zheng FY; Cai WL; Han AQ; Xie YK
    J Hazard Mater; 2006 Jul; 135(1-3):431-6. PubMed ID: 16426745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insight into integration of photocatalytic and microbial wastewater treatment technologies for recalcitrant organic pollutants: From sequential to simultaneous reactions.
    Lu Z; Xu Y; Akbari MZ; Liang C; Peng L
    Chemosphere; 2022 May; 295():133952. PubMed ID: 35167831
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation.
    Yaqoob AA; Noor NHBM; Serrà A; Ibrahim MNM
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32408530
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives.
    Guan G; Ye E; You M; Li Z
    Small; 2020 May; 16(19):e1907087. PubMed ID: 32301226
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic reactors for photocatalytic water purification.
    Wang N; Zhang X; Wang Y; Yu W; Chan HL
    Lab Chip; 2014 Mar; 14(6):1074-82. PubMed ID: 24481005
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water.
    Zielińska-Jurek A; Bielan Z; Wysocka I; Strychalska J; Janczarek M; Klimczuk T
    J Environ Manage; 2017 Jun; 195(Pt 2):157-165. PubMed ID: 27394084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Silver-based semiconductor Z-scheme photocatalytic systems for environmental purification.
    Xue W; Huang D; Wen X; Chen S; Cheng M; Deng R; Li B; Yang Y; Liu X
    J Hazard Mater; 2020 May; 390():122128. PubMed ID: 32006844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selectively Photocatalytic Activity of an Open-Framework Chalcogenide Built from Corner-Sharing T4 Supertetrahedral Clusters.
    Pei H; Wang L; Zeng MH
    Inorg Chem; 2019 Sep; 58(18):12011-12016. PubMed ID: 31483632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 2D/2D Heterojunction systems for the removal of organic pollutants: A review.
    Qin MZ; Fu WX; Guo H; Niu CG; Huang DW; Liang C; Yang YY; Liu HY; Tang N; Fan QQ
    Adv Colloid Interface Sci; 2021 Nov; 297():102540. PubMed ID: 34634576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.