These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 273901)
1. Acetylcholine-receptor-mediated ion flux in electroplax membrane microsacs (vesicles): change in mechanism produced by asymmetrical distribution of sodium and potassium ions. Hess GP; Lipkowitz S; Struve GE Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1703-7. PubMed ID: 273901 [TBL] [Abstract][Full Text] [Related]
2. Acetylcholine-receptor-mediated ion flux in electroplax membrane preparations. Hess GP; Andrews JP; Struve GE; Goombs SE Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4371-5. PubMed ID: 1060114 [TBL] [Abstract][Full Text] [Related]
3. Acetylcholine receptor: channel-opening kinetics evaluated by rapid chemical kinetic and single-channel current measurements. Udgaonkar JB; Hess GP Biophys J; 1987 Nov; 52(5):873-83. PubMed ID: 2447965 [TBL] [Abstract][Full Text] [Related]
4. Acetylcholine receptor-controlled ion flux in electroplax membrane vesicles: identification and characterization of membrane properties that affect ion flux measurements. Kim PS; Hess GP J Membr Biol; 1981 Feb; 58(3):203-11. PubMed ID: 6163857 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes. Cash DJ; Hess GP Proc Natl Acad Sci U S A; 1980 Feb; 77(2):842-6. PubMed ID: 6928684 [TBL] [Abstract][Full Text] [Related]
7. Comparison of acetylcholine receptor-controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: chemical kinetic measurements in the millisecond region. Hess GP; Pasquale EB; Walker JW; McNamee MG Proc Natl Acad Sci U S A; 1982 Feb; 79(4):963-7. PubMed ID: 6951180 [TBL] [Abstract][Full Text] [Related]
8. Single-channel current recordings of acetylcholine receptors in electroplax isolated from the Electrophorus electricus Main and Sachs' electric organs. Pasquale EB; Udgaonkar JB; Hess GP J Membr Biol; 1986; 93(2):195-204. PubMed ID: 2433452 [TBL] [Abstract][Full Text] [Related]
9. Acetylcholine receptor inhibition by d-tubocurarine involves both a competitive and a noncompetitive binding site as determined by stopped-flow measurements of receptor-controlled ion flux in membrane vesicles. Karpen JW; Hess GP Biochemistry; 1986 Apr; 25(7):1786-92. PubMed ID: 2423117 [TBL] [Abstract][Full Text] [Related]
10. Acetylcholine-receptor-mediated ion fluxes in Electrophorus electricus and Torpedo california membrane vesicles. Cash DJ; Aoshima H; Pasquale EB; Hess GP Rev Physiol Biochem Pharmacol; 1985; 102():73-117. PubMed ID: 2412273 [No Abstract] [Full Text] [Related]
11. Acetylcholine receptor: evidence for a regulatory binding site in investigations of suberyldicholine-induced transmembrane ion flux in Electrophorus electricus membrane vesicles. Pasquale EB; Takeyasu K; Udgaonkar JB; Cash DJ; Severski MC; Hess GP Biochemistry; 1983 Dec; 22(25):5967-73. PubMed ID: 6661420 [TBL] [Abstract][Full Text] [Related]
12. Acetylcholine receptor (from Electrophorus electricus): a comparison of single-channel current recordings and chemical kinetic measurements. Hess GP; Kolb HA; Läuger P; Schoffeniels E; Schwarze W Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5281-5. PubMed ID: 6089188 [TBL] [Abstract][Full Text] [Related]
13. Binding of antibodies to acetylcholine receptors in Electrophorus and Torpedo electroplax membranes. Karlin A; Holtzman E; Valderrama R; Damle V; Hsu K; Reyes F J Cell Biol; 1978 Mar; 76(3):577-92. PubMed ID: 344325 [TBL] [Abstract][Full Text] [Related]
14. Acetylcholine receptor: evidence for a voltage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage clamp. Takeyasu K; Udgaonkar JB; Hess GP Biochemistry; 1983 Dec; 22(25):5973-8. PubMed ID: 6661421 [TBL] [Abstract][Full Text] [Related]
15. Transmembrane flux and receptor desensitization measured with membrane vesicles. Homogeneity of vesicles investigated by computer simulation. Cash DJ; Langer RM; Subbarao K; Bradbury JR Biophys J; 1988 Nov; 54(5):909-19. PubMed ID: 2468368 [TBL] [Abstract][Full Text] [Related]
16. Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids. Gonzalez-Ros JM; Paraschos A; Martinez-Carrion M Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1796-800. PubMed ID: 6246504 [TBL] [Abstract][Full Text] [Related]
17. Inactivation (desensitization) of the acetylcholine receptor in Electrophorus electricus membrane vesicles by carbamylcholine: comparison between ion flux and alpha-bungarotoxin binding. Epstein N; Hess GP; Kim PS; Noble RL J Membr Biol; 1980 Sep; 56(2):133-7. PubMed ID: 7441723 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of inactivation (desensitization) of acetylcholine receptor. Investigations by fast reaction techniques with membrane vesicles. Aoshima H; Cash DJ; Hess GP Biochemistry; 1981 Jun; 20(12):3467-74. PubMed ID: 7260051 [TBL] [Abstract][Full Text] [Related]
19. Cocaine and phencyclidine inhibition of the acetylcholine receptor: analysis of the mechanisms of action based on measurements of ion flux in the millisecond-to-minute time region. Karpen JW; Aoshima H; Abood LG; Hess GP Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2509-13. PubMed ID: 6953408 [TBL] [Abstract][Full Text] [Related]
20. Ceruleotoxin: a possible marker of the cholinergic ionophore. Bon C; Changeux JP Eur J Biochem; 1977 Mar; 74(1):43-51. PubMed ID: 856574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]