These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27390179)

  • 21. Optimization of Checkerboard Spatial Frequencies for Steady-State Visual Evoked Potential Brain-Computer Interfaces.
    Waytowich NR; Yamani Y; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):557-565. PubMed ID: 27542113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target-directed movements at a comfortable pace: movement duration and Fitts's law.
    Young SJ; Pratt J; Chau T
    J Mot Behav; 2009 Jul; 41(4):339-46. PubMed ID: 19508960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond p-values in the evaluation of brain-computer interfaces: A Bayesian estimation approach.
    Melinscak F; Montesano L
    J Neurosci Methods; 2016 Sep; 270():30-45. PubMed ID: 27317498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulating Fitts's Law: perceiving targets at the last placeholder.
    Radulescu PV; Al-Aidroos N; Adam JJ; Fischer MH; Pratt J
    Acta Psychol (Amst); 2011 May; 137(1):101-5. PubMed ID: 21474110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How one breaks Fitts's Law and gets away with it: Moving further and faster involves more efficient online control.
    Glazebrook CM; Kiernan D; Welsh TN; Tremblay L
    Hum Mov Sci; 2015 Feb; 39():163-76. PubMed ID: 25485765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual layout modulates Fitts's law: the importance of first and last positions.
    Pratt J; Adam JJ; Fischer MH
    Psychon Bull Rev; 2007 Apr; 14(2):350-5. PubMed ID: 17694925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiscale temporal neural dynamics predict performance in a complex sensorimotor task.
    Samek W; Blythe DAJ; Curio G; Müller KR; Blankertz B; Nikulin VV
    Neuroimage; 2016 Nov; 141():291-303. PubMed ID: 27402598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Moving farther but faster: an exception to Fitts's law.
    Adam JJ; Mol R; Pratt J; Fischer MH
    Psychol Sci; 2006 Sep; 17(9):794-8. PubMed ID: 16984297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An optimization principle for determining movement duration.
    Tanaka H; Krakauer JW; Qian N
    J Neurophysiol; 2006 Jun; 95(6):3875-86. PubMed ID: 16571740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A SSVEP-BCI Setup Based on Depth-of-Field.
    Cotrina A; Benevides AB; Castillo-Garcia J; Benevides AB; Rojas-Vigo D; Ferreira A; Bastos-Filho TF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):1047-1057. PubMed ID: 28252409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.
    Riechmann H; Finke A; Ritter H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):692-9. PubMed ID: 26469340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.
    Robinson N; Guan C; Vinod AP
    J Neural Eng; 2015 Dec; 12(6):066019. PubMed ID: 26501230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm.
    Robinson N; Vinod AP; Ang KK; Tee KP; Guan CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2123-32. PubMed ID: 23446029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of P300 latency jitter on event related potential-based brain-computer interface performance.
    Aricò P; Aloise F; Schettini F; Salinari S; Mattia D; Cincotti F
    J Neural Eng; 2014 Jun; 11(3):035008. PubMed ID: 24835331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-trial connectivity estimation for classification of motor imagery data.
    Billinger M; Brunner C; Müller-Putz GR
    J Neural Eng; 2013 Aug; 10(4):046006. PubMed ID: 23751454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.