These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27390756)

  • 21. Bimolecular fluorescence complementation.
    Wong KA; O'Bryan JP
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21525844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of protein-protein interaction using bimolecular fluorescence complementation assay.
    Pham CD
    Methods Mol Biol; 2015; 1278():483-95. PubMed ID: 25859971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation.
    Lasry I; Golan Y; Berman B; Amram N; Glaser F; Assaraf YG
    J Biol Chem; 2014 Mar; 289(11):7275-92. PubMed ID: 24451381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions.
    Chu J; Zhang Z; Zheng Y; Yang J; Qin L; Lu J; Huang ZL; Zeng S; Luo Q
    Biosens Bioelectron; 2009 Sep; 25(1):234-9. PubMed ID: 19596565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bimolecular fluorescence complementation (BiFC) analysis of protein-protein interaction: how to calculate signal-to-noise ratio.
    Kodama Y; Hu CD
    Methods Cell Biol; 2013; 113():107-21. PubMed ID: 23317900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis.
    Hu CD; Grinberg AV; Kerppola TK
    Curr Protoc Protein Sci; 2005 Sep; Chapter 19():19.10.1-19.10.21. PubMed ID: 18429278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFC-based FRET.
    Shyu YJ; Suarez CD; Hu CD
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):151-6. PubMed ID: 18172215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors.
    Gookin TE; Assmann SM
    Plant J; 2014 Nov; 80(3):553-67. PubMed ID: 25187041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous Determination and Subcellular Localization of Protein-Protein Interactions in Plant Cells Using Bimolecular Fluorescence Complementation Assay.
    Tang Z; Bernards MA; Wang A
    Methods Mol Biol; 2022; 2400():75-85. PubMed ID: 34905192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells.
    Kerppola TK
    Annu Rev Biophys; 2008; 37():465-87. PubMed ID: 18573091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bimolecular Fluorescence Complementation analysis to reveal protein interactions in herpes virus infected cells.
    Hernandez FP; Sandri-Goldin RM
    Methods; 2011 Oct; 55(2):182-7. PubMed ID: 21820055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualization of the Genomic Loci That Are Bound by Specific Multiprotein Complexes by Bimolecular Fluorescence Complementation Analysis on Drosophila Polytene Chromosomes.
    Deng H; Kerppola TK
    Methods Enzymol; 2017; 589():429-455. PubMed ID: 28336073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative analysis of neuropeptide Y receptor association with beta-arrestin2 measured by bimolecular fluorescence complementation.
    Kilpatrick LE; Briddon SJ; Hill SJ; Holliday ND
    Br J Pharmacol; 2010 Jun; 160(4):892-906. PubMed ID: 20438572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spying on protein interactions in living cells with reconstituted scarlet light.
    Wang S; Ding M; Xue B; Hou Y; Sun Y
    Analyst; 2018 Oct; 143(21):5161-5169. PubMed ID: 30255175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis.
    Shyu YJ; Hiatt SM; Duren HM; Ellis RE; Kerppola TK; Hu CD
    Nat Protoc; 2008; 3(4):588-96. PubMed ID: 18388940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bimolecular fluorescence complementation (BiFC) assay for protein-protein interaction in onion cells using the helios gene gun.
    Hollender CA; Liu Z
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20567209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bimolecular Fluorescence Complementation (BiFC) in Host-Virus Interactions.
    Silva FDA; Machado JPB; Dos Reis PAB
    Methods Mol Biol; 2024; 2724():211-223. PubMed ID: 37987908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilizing bimolecular fluorescence complementation (BiFC) to assay protein-protein interaction in plants.
    Ohad N; Yalovsky S
    Methods Mol Biol; 2010; 655():347-58. PubMed ID: 20734272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells.
    Schütze K; Harter K; Chaban C
    Methods Mol Biol; 2009; 479():189-202. PubMed ID: 19083187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualization of Host Cell Kinase Activation by Viral Proteins Using GFP Fluorescence Complementation and Immunofluorescence Microscopy.
    Shu ST; Li WF; Smithgall TE
    Bio Protoc; 2021 Jul; 11(13):e4068. PubMed ID: 34327265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.