These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 27391049)
1. Degradation of some representative polycyclic aromatic hydrocarbons by the water-soluble protein extracts from Zea mays L. cv PR32-B10. Barone R; de Biasi MG; Piccialli V; de Napoli L; Oliviero G; Borbone N; Piccialli G Chemosphere; 2016 Oct; 160():258-65. PubMed ID: 27391049 [TBL] [Abstract][Full Text] [Related]
2. Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.). Houshani M; Salehi-Lisar SY; Motafakkerazad R; Movafeghi A Environ Sci Pollut Res Int; 2019 Apr; 26(10):9938-9944. PubMed ID: 30739292 [TBL] [Abstract][Full Text] [Related]
3. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water. Qi YB; Wang CY; Lv CY; Lun ZM; Zheng CG Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28241412 [TBL] [Abstract][Full Text] [Related]
4. Growth and Phytoremediation Efficiency of Winged Bean in Fluorene- and Pyrene-Contaminated Soil. Chouychai W; Swangying T; Somtrakoon K; Lee H Bull Environ Contam Toxicol; 2018 Nov; 101(5):631-636. PubMed ID: 30368575 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost. Kobayashi T; Murai Y; Tatsumi K; Iimura Y Sci Total Environ; 2009 Nov; 407(22):5805-10. PubMed ID: 19660784 [TBL] [Abstract][Full Text] [Related]
6. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. García-Sánchez M; Košnář Z; Mercl F; Aranda E; Tlustoš P Ecotoxicol Environ Saf; 2018 Jan; 147():165-174. PubMed ID: 28843188 [TBL] [Abstract][Full Text] [Related]
7. Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types. Banach-Szott M; Debska B; Wisniewska A; Pakula J Environ Sci Pollut Res Int; 2015 Apr; 22(7):5059-69. PubMed ID: 25586610 [TBL] [Abstract][Full Text] [Related]
8. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil. Anyanwu IN; Ikpikpini OC; Semple KT Ecotoxicol Environ Saf; 2018 Jan; 147():594-601. PubMed ID: 28923724 [TBL] [Abstract][Full Text] [Related]
9. Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M J Environ Biol; 2009 Jan; 30(1):139-44. PubMed ID: 20112876 [TBL] [Abstract][Full Text] [Related]
10. Development of a short path thermal desorption-gas chromatography/mass spectrometry method for the determination of polycyclic aromatic hydrocarbons in indoor air. Li Y; Xian Q; Li L J Chromatogr A; 2017 May; 1497():127-134. PubMed ID: 28366565 [TBL] [Abstract][Full Text] [Related]
11. Degradation of PAHs by high frequency ultrasound. Manariotis ID; Karapanagioti HK; Chrysikopoulos CV Water Res; 2011 Apr; 45(8):2587-94. PubMed ID: 21414649 [TBL] [Abstract][Full Text] [Related]
12. Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt. El Nemr A; Abd-Allah AM Chemosphere; 2003 Sep; 52(10):1711-6. PubMed ID: 12871738 [TBL] [Abstract][Full Text] [Related]
13. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons. Li S; Pi Y; Bao M; Zhang C; Zhao D; Li Y; Sun P; Lu J Mar Pollut Bull; 2015 Dec; 101(1):219-225. PubMed ID: 26494247 [TBL] [Abstract][Full Text] [Related]
14. Characterization and genomic function analysis of phenanthrene-degrading bacterium Ji D; Mao Z; He J; Peng S; Wen H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):549-562. PubMed ID: 31913782 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Zazouli MA; Ala A; Asghari S; Babanezhad E Int J Phytoremediation; 2024; 26(5):608-617. PubMed ID: 37705149 [TBL] [Abstract][Full Text] [Related]
16. [Determination of the migration of 16 PAHs from paper cups into food stimulants]. Zhou N; Luo H; Zhu B Wei Sheng Yan Jiu; 2015 Mar; 44(2):303-6. PubMed ID: 25997239 [TBL] [Abstract][Full Text] [Related]
17. Pyrolysis-gas chromatography-mass spectrometry with electron-ionization or resonance-enhanced-multi-photon-ionization for characterization of polycyclic aromatic hydrocarbons in the Baltic Sea. Otto S; Streibel T; Erdmann S; Klingbeil S; Schulz-Bull D; Zimmermann R Mar Pollut Bull; 2015 Oct; 99(1-2):35-42. PubMed ID: 26277803 [TBL] [Abstract][Full Text] [Related]
18. Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: distribution, possible sources, and cancer risks. Yang X; Ren D; Sun W; Li X; Huang B; Chen R; Lin C; Pan X Environ Sci Pollut Res Int; 2015 May; 22(9):6696-712. PubMed ID: 25422115 [TBL] [Abstract][Full Text] [Related]
19. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil. Košnář Z; Mercl F; Tlustoš P Ecotoxicol Environ Saf; 2018 May; 153():16-22. PubMed ID: 29407733 [TBL] [Abstract][Full Text] [Related]
20. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Ping LF; Luo YM; Zhang HB; Li QB; Wu LH Environ Pollut; 2007 May; 147(2):358-65. PubMed ID: 16815614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]