These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms. Margulies CM; Chaim IA; Mazumder A; Criscione J; Samson LD PLoS One; 2017; 12(9):e0184619. PubMed ID: 28886188 [TBL] [Abstract][Full Text] [Related]
5. Alkyladenine DNA glycosylase deficiency uncouples alkylation-induced strand break generation from PARP-1 activation and glycolysis inhibition. Alhumaydhi FA; de O Lopes D; Bordin DL; Aljohani ASM; Lloyd CB; McNicholas MD; Milano L; Charlier CF; Villela I; Henriques JAP; Plant KE; Elliott RM; Meira LB Sci Rep; 2020 Feb; 10(1):2209. PubMed ID: 32042007 [TBL] [Abstract][Full Text] [Related]
6. Inflammation, necrosis, and the kinase RIP3 are key mediators of AAG-dependent alkylation-induced retinal degeneration. Allocca M; Corrigan JJ; Mazumder A; Fake KR; Samson LD Sci Signal; 2019 Feb; 12(568):. PubMed ID: 30755477 [TBL] [Abstract][Full Text] [Related]
7. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney. Ebrahimkhani MR; Daneshmand A; Mazumder A; Allocca M; Calvo JA; Abolhassani N; Jhun I; Muthupalani S; Ayata C; Samson LD Proc Natl Acad Sci U S A; 2014 Nov; 111(45):E4878-86. PubMed ID: 25349415 [TBL] [Abstract][Full Text] [Related]
8. A DNA repair-independent role for alkyladenine DNA glycosylase in alkylation-induced unfolded protein response. Milano L; Charlier CF; Andreguetti R; Cox T; Healing E; Thomé MP; Elliott RM; Samson LD; Masson JY; Lenz G; Henriques JAP; Nohturfft A; Meira LB Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35197283 [TBL] [Abstract][Full Text] [Related]
9. Parp1 activation in mouse embryonic fibroblasts promotes Pol beta-dependent cellular hypersensitivity to alkylation damage. Jelezcova E; Trivedi RN; Wang XH; Tang JB; Brown AR; Goellner EM; Schamus S; Fornsaglio JL; Sobol RW Mutat Res; 2010 Apr; 686(1-2):57-67. PubMed ID: 20096707 [TBL] [Abstract][Full Text] [Related]
10. Effects of substrate specificity on initiating the base excision repair of N-methylpurines by variant human 3-methyladenine DNA glycosylases. Connor EE; Wilson JJ; Wyatt MD Chem Res Toxicol; 2005 Jan; 18(1):87-94. PubMed ID: 15651853 [TBL] [Abstract][Full Text] [Related]
11. Oncometabolite 2-hydroxyglutarate suppresses basal protein levels of DNA polymerase beta that enhances alkylating agent and PARG inhibition induced cytotoxicity. Saville KM; Al-Rahahleh RQ; Siddiqui AH; Andrews ME; Roos WP; Koczor CA; Andrews JF; Hayat F; Migaud ME; Sobol RW DNA Repair (Amst); 2024 Aug; 140():103700. PubMed ID: 38897003 [TBL] [Abstract][Full Text] [Related]
12. XRCC1 counteracts poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib, and a clinical alkylating agent, temozolomide, by promoting the removal of trapped PARP1 from broken DNA. Hirota K; Ooka M; Shimizu N; Yamada K; Tsuda M; Ibrahim MA; Yamada S; Sasanuma H; Masutani M; Takeda S Genes Cells; 2022 May; 27(5):331-344. PubMed ID: 35194903 [TBL] [Abstract][Full Text] [Related]
13. Initiation of the ATM-Chk2 DNA damage response through the base excision repair pathway. Chou WC; Hu LY; Hsiung CN; Shen CY Carcinogenesis; 2015 Aug; 36(8):832-40. PubMed ID: 26025911 [TBL] [Abstract][Full Text] [Related]
14. Base excision repair intermediates induce p53-independent cytotoxic and genotoxic responses. Sobol RW; Kartalou M; Almeida KH; Joyce DF; Engelward BP; Horton JK; Prasad R; Samson LD; Wilson SH J Biol Chem; 2003 Oct; 278(41):39951-9. PubMed ID: 12882965 [TBL] [Abstract][Full Text] [Related]
15. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing. Engelward BP; Dreslin A; Christensen J; Huszar D; Kurahara C; Samson L EMBO J; 1996 Feb; 15(4):945-52. PubMed ID: 8631315 [TBL] [Abstract][Full Text] [Related]
16. The effect of dietary folic acid deficiency on the cytotoxic and mutagenic responses to methyl methanesulfonate in wild-type and in 3-methyladenine DNA glycosylase-deficient Aag null mice. Branda RF; O'Neill JP; Brooks EM; Powden C; Naud SJ; Nicklas JA Mutat Res; 2007 Feb; 615(1-2):12-7. PubMed ID: 17207504 [TBL] [Abstract][Full Text] [Related]
17. ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair. Tsuda M; Cho K; Ooka M; Shimizu N; Watanabe R; Yasui A; Nakazawa Y; Ogi T; Harada H; Agama K; Nakamura J; Asada R; Fujiike H; Sakuma T; Yamamoto T; Murai J; Hiraoka M; Koike K; Pommier Y; Takeda S; Hirota K PLoS One; 2017; 12(11):e0188320. PubMed ID: 29149203 [TBL] [Abstract][Full Text] [Related]
18. The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Trivedi RN; Almeida KH; Fornsaglio JL; Schamus S; Sobol RW Cancer Res; 2005 Jul; 65(14):6394-400. PubMed ID: 16024643 [TBL] [Abstract][Full Text] [Related]
19. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Engelward BP; Weeda G; Wyatt MD; Broekhof JL; de Wit J; Donker I; Allan JM; Gold B; Hoeijmakers JH; Samson LD Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13087-92. PubMed ID: 9371804 [TBL] [Abstract][Full Text] [Related]
20. Mutations associated with base excision repair deficiency and methylation-induced genotoxic stress. Sobol RW; Watson DE; Nakamura J; Yakes FM; Hou E; Horton JK; Ladapo J; Van Houten B; Swenberg JA; Tindall KR; Samson LD; Wilson SH Proc Natl Acad Sci U S A; 2002 May; 99(10):6860-5. PubMed ID: 11983862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]