These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27391532)

  • 1. Oculometric Assessment of Sensorimotor Impairment Associated with TBI.
    Liston DB; Wong LR; Stone LS
    Optom Vis Sci; 2017 Jan; 94(1):51-59. PubMed ID: 27391532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oculometric assessment of dynamic visual processing.
    Liston DB; Stone LS
    J Vis; 2014 Dec; 14(14):12. PubMed ID: 25527150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct pattern of oculomotor impairment associated with acute sleep loss and circadian misalignment.
    Stone LS; Tyson TL; Cravalho PF; Feick NH; Flynn-Evans EE
    J Physiol; 2019 Sep; 597(17):4643-4660. PubMed ID: 31389043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic assessment of sensorimotor deficits after traumatic brain injury.
    Debert CT; Herter TM; Scott SH; Dukelow S
    J Neurol Phys Ther; 2012 Jun; 36(2):58-67. PubMed ID: 22592061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Craig Hospital Eye Evaluation Rating Scale (CHEERS).
    Politzer T; Berryman A; Rasavage K; Snell L; Weintraub A; Gerber DJ
    PM R; 2017 May; 9(5):477-482. PubMed ID: 27664404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Robotics to Quantify Impairments in Sensorimotor Ability, Visuospatial Attention, Working Memory, and Executive Function After Traumatic Brain Injury.
    Logan LM; Semrau JA; Debert CT; Kenzie JM; Scott SH; Dukelow SP
    J Head Trauma Rehabil; 2018; 33(4):E61-E73. PubMed ID: 29084099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oculometric biomarkers of visuomotor deficits in clinically asymptomatic patients with systemic lupus erythematosus undergoing long-term hydroxychloroquine treatment.
    Berneshawi AR; Seyedmadani K; Goel R; Anderson MR; Tyson TL; Akay YM; Akay M; Leung LB; Stone LS
    Front Ophthalmol (Lausanne); 2024; 4():1354892. PubMed ID: 39104603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-behavior relationships in young traumatic brain injury patients: fractional anisotropy measures are highly correlated with dynamic visuomotor tracking performance.
    Caeyenberghs K; Leemans A; Geurts M; Taymans T; Vander Linden C; Smits-Engelsman BC; Sunaert S; Swinnen SP
    Neuropsychologia; 2010 Apr; 48(5):1472-82. PubMed ID: 20117121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reading eye movements in traumatic brain injury.
    Reddy AVC; Mani R; Selvakumar A; Hussaindeen JR
    J Optom; 2020; 13(3):155-162. PubMed ID: 31784207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficits in predictive smooth pursuit after mild traumatic brain injury.
    Suh M; Kolster R; Sarkar R; McCandliss B; Ghajar J;
    Neurosci Lett; 2006 Jun; 401(1-2):108-13. PubMed ID: 16554121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual problems associated with traumatic brain injury.
    Armstrong RA
    Clin Exp Optom; 2018 Nov; 101(6):716-726. PubMed ID: 29488253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting feigned traumatic brain injury with eye tracking during a test of performance validity.
    Kanser RJ; Bashem JR; Patrick SD; Hanks RA; Rapport LJ
    Neuropsychology; 2020 Mar; 34(3):308-320. PubMed ID: 31944789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder.
    Trillenberg P; Sprenger A; Talamo S; Herold K; Helmchen C; Verleger R; Lencer R
    Eur Arch Psychiatry Clin Neurosci; 2017 Apr; 267(3):225-235. PubMed ID: 26816222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of eye movement reactivation on visual memory among individuals with moderate-to-severe traumatic brain injury (TBI).
    Deitcher Y; Sachar Y; Vakil E
    J Clin Exp Neuropsychol; 2020 Mar; 42(2):208-221. PubMed ID: 31847796
    [No Abstract]   [Full Text] [Related]  

  • 16. Detection of Subtle Cognitive Changes after mTBI Using a Novel Tablet-Based Task.
    Fischer TD; Red SD; Chuang AZ; Jones EB; McCarthy JJ; Patel SS; Sereno AB
    J Neurotrauma; 2016 Jul; 33(13):1237-46. PubMed ID: 26398492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traumatic brain injury impairs sensorimotor function in mice.
    Sackheim AM; Stockwell D; Villalba N; Haines L; Scott CL; Russell S; Hammack SE; Freeman K
    J Surg Res; 2017 Jun; 213():100-109. PubMed ID: 28601302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury.
    Shumskaya E; van Gerven MA; Norris DG; Vos PE; Kessels RP
    Exp Brain Res; 2017 Mar; 235(3):799-807. PubMed ID: 27885406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of neuro-optometric rehabilitation using the Developmental Eye Movement (DEM) test in adults with acquired brain injury.
    Kapoor N; Ciuffreda KJ
    J Optom; 2018; 11(2):103-112. PubMed ID: 28676352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of human engagement depicted in contextual photographs on the visual attention patterns of adults with traumatic brain injury.
    Thiessen A; Brown J; Beukelman D; Hux K
    J Commun Disord; 2017 Sep; 69():58-71. PubMed ID: 28783543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.