These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 27391654)
1. GCORE-sib: An efficient gene-gene interaction tool for genome-wide association studies based on discordant sib pairs. Sung PY; Wang YT; Hsiung CA; Chung RH BMC Bioinformatics; 2016 Jul; 17(1):273. PubMed ID: 27391654 [TBL] [Abstract][Full Text] [Related]
2. An efficient gene-gene interaction test for genome-wide association studies in trio families. Sung PY; Wang YT; Yu YW; Chung RH Bioinformatics; 2016 Jun; 32(12):1848-55. PubMed ID: 26873927 [TBL] [Abstract][Full Text] [Related]
3. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779 [TBL] [Abstract][Full Text] [Related]
4. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits. Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983 [TBL] [Abstract][Full Text] [Related]
5. High-throughput analysis of epistasis in genome-wide association studies with BiForce. Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535 [TBL] [Abstract][Full Text] [Related]
6. Gene-Gene Interactions Detection Using a Two-stage Model. Wang Z; Sul JH; Snir S; Lozano JA; Eskin E J Comput Biol; 2015 Jun; 22(6):563-76. PubMed ID: 25871811 [TBL] [Abstract][Full Text] [Related]
7. INTERSNP: genome-wide interaction analysis guided by a priori information. Herold C; Steffens M; Brockschmidt FF; Baur MP; Becker T Bioinformatics; 2009 Dec; 25(24):3275-81. PubMed ID: 19837719 [TBL] [Abstract][Full Text] [Related]
8. RAPID detection of gene-gene interactions in genome-wide association studies. Brinza D; Schultz M; Tesler G; Bafna V Bioinformatics; 2010 Nov; 26(22):2856-62. PubMed ID: 20871107 [TBL] [Abstract][Full Text] [Related]
9. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases. Lin PL; Yu YW; Chung RH PLoS One; 2016; 11(9):e0162910. PubMed ID: 27622767 [TBL] [Abstract][Full Text] [Related]
10. A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS. Pecanka J; Jonker MA; ; Bochdanovits Z; Van Der Vaart AW Biostatistics; 2017 Jul; 18(3):477-494. PubMed ID: 28334077 [TBL] [Abstract][Full Text] [Related]
11. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies. Ma L; Runesha HB; Dvorkin D; Garbe JR; Da Y BMC Bioinformatics; 2008 Jul; 9():315. PubMed ID: 18644146 [TBL] [Abstract][Full Text] [Related]
12. Multifactor-dimensionality reduction versus family-based association tests in detecting susceptibility loci in discordant sib-pair studies. Meng Y; Ma Q; Yu Y; Farrell J; Farrer LA; Wilcox MA BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S146. PubMed ID: 16451606 [TBL] [Abstract][Full Text] [Related]
13. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810 [TBL] [Abstract][Full Text] [Related]
14. METAINTER: meta-analysis of multiple regression models in genome-wide association studies. Vaitsiakhovich T; Drichel D; Herold C; Lacour A; Becker T Bioinformatics; 2015 Jan; 31(2):151-7. PubMed ID: 25252781 [TBL] [Abstract][Full Text] [Related]
15. Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS. Greene CS; Sinnott-Armstrong NA; Himmelstein DS; Park PJ; Moore JH; Harris BT Bioinformatics; 2010 Mar; 26(5):694-5. PubMed ID: 20081222 [TBL] [Abstract][Full Text] [Related]
16. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies. Cowman T; Koyutürk M Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458 [TBL] [Abstract][Full Text] [Related]
17. FastEpistasis: a high performance computing solution for quantitative trait epistasis. Schüpbach T; Xenarios I; Bergmann S; Kapur K Bioinformatics; 2010 Jun; 26(11):1468-9. PubMed ID: 20375113 [TBL] [Abstract][Full Text] [Related]
18. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
19. A Tool for Detecting Complementary Single Nucleotide Polymorphism Pairs in Genome-Wide Association Studies for Epistasis Testing. Caylak G; Tastan O; Cicek AE J Comput Biol; 2021 Apr; 28(4):378-380. PubMed ID: 33325775 [No Abstract] [Full Text] [Related]
20. iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies. Piriyapongsa J; Ngamphiw C; Intarapanich A; Kulawonganunchai S; Assawamakin A; Bootchai C; Shaw PJ; Tongsima S BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S2. PubMed ID: 23281813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]