BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27391930)

  • 21. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach.
    Lehmann A; Wixted JH; Shapovalov MV; Roder H; Dunbrack RL; Robinson MK
    MAbs; 2015; 7(6):1058-71. PubMed ID: 26337947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CSPG4 as a target for the specific killing of triple-negative breast cancer cells by a recombinant SNAP-tag-based antibody-auristatin F drug conjugate.
    Mungra N; Biteghe FAN; Malindi Z; Huysamen AM; Karaan M; Hardcastle NS; Bunjun R; Chetty S; Naran K; Lang D; Richter W; Hunter R; Barth S
    J Cancer Res Clin Oncol; 2023 Oct; 149(13):12203-12225. PubMed ID: 37432459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of a single-chain fragment of monoclonal antibody to ACE suitable for lung endothelial targeting.
    Balyasnikova IV; Berestetskaya JV; Visintine DJ; Nesterovitch AB; Adamian L; Danilov SM
    Microvasc Res; 2010 Dec; 80(3):355-64. PubMed ID: 20888351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of scFv specific to human VEGFR-3 from the neutralizing mAb BDD073.
    Chen H; Wang C; Gao Y; Gao J; Zhou X; Cai Z; Sun Q
    Protein Eng Des Sel; 2015 Jan; 28(1):19-22. PubMed ID: 25428897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocell targeting using engineered bispecific antibodies.
    Taylor K; Howard CB; Jones ML; Sedliarou I; MacDiarmid J; Brahmbhatt H; Munro TP; Mahler SM
    MAbs; 2015; 7(1):53-65. PubMed ID: 25523746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescent labeling of SNAP-tagged proteins in cells.
    Lukinavičius G; Reymond L; Johnsson K
    Methods Mol Biol; 2015; 1266():107-18. PubMed ID: 25560070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent and oriented immobilization of scFv antibody fragments via an engineered glycan moiety.
    Hu X; Hortigüela MJ; Robin S; Lin H; Li Y; Moran AP; Wang W; Wall JG
    Biomacromolecules; 2013 Jan; 14(1):153-9. PubMed ID: 23215344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-specific protein labeling with SNAP-tags.
    Cole NB
    Curr Protoc Protein Sci; 2013 Sep; 73():30.1.1-30.1.16. PubMed ID: 24510614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent labeling of antibody fragments using split GFP.
    Ferrara F; Listwan P; Waldo GS; Bradbury AR
    PLoS One; 2011; 6(10):e25727. PubMed ID: 21998685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of potential therapeutic human single-chain Fv antibodies against cholecystokinin-B/gastrin receptor by phage display technology.
    Tohidkia MR; Asadi F; Barar J; Omidi Y
    BioDrugs; 2013 Feb; 27(1):55-67. PubMed ID: 23344946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion.
    Colombo M; Mazzucchelli S; Montenegro JM; Galbiati E; Corsi F; Parak WJ; Prosperi D
    Small; 2012 May; 8(10):1492-7. PubMed ID: 22431243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple strategy for single-chain fragment antibody-conjugated probe construction.
    Xu C; Chen X; Yang M; Yuan X; Zhao A; Bao H
    Life Sci; 2019 Dec; 239():117052. PubMed ID: 31733318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescent labeling of COS-7 expressing SNAP-tag fusion proteins for live cell imaging.
    Provost CR; Sun L
    J Vis Exp; 2010 May; (39):. PubMed ID: 20485262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of divalent anti-keratin 8 single-chain antibodies (sc(Fv)(2)), expression in Pichia pastoris and their reactivity with multicellular tumor spheroids.
    Jafari R; Holm P; Piercecchi M; Sundström BE
    J Immunol Methods; 2011 Feb; 364(1-2):65-76. PubMed ID: 21093447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display.
    Keller T; Kalt R; Raab I; Schachner H; Mayrhofer C; Kerjaschki D; Hantusch B
    PLoS One; 2015; 10(5):e0127169. PubMed ID: 25993332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multimerization of anti-(epidermal growth factor receptor) IgG fragments induces an antitumor effect: the case for humanized 528 scFv multimers.
    Asano R; Hagiwara Y; Koyama N; Masakari Y; Orimo R; Arai K; Ogata H; Furumoto S; Umetsu M; Kumagai I
    FEBS J; 2013 Oct; 280(19):4816-26. PubMed ID: 23890417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Downstream characterization of anti-TNF-α single chain variable fragment antibodies.
    Abdolalizadeh J; Nouri M; Zolbanin JM; Baradaran B; Barzegari A; Omidi Y
    Hum Antibodies; 2012; 21(1-2):41-8. PubMed ID: 22885959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel solid-phase refolding method for preparation of scFv-immobilized polystyrene plates with high-antigen-binding activity.
    Kumada Y; Shiritani Y; Hamasaki K; Nakagawa A; Sasaki E; Kishimoto M
    Anal Bioanal Chem; 2010 Oct; 398(3):1295-303. PubMed ID: 20661728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative expression of different antibody formats in mammalian cells and Pichia pastoris.
    Braren I; Greunke K; Umland O; Deckers S; Bredehorst R; Spillner E
    Biotechnol Appl Biochem; 2007 Aug; 47(Pt 4):205-14. PubMed ID: 17373908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Evolution of SNAP-Tag Labels.
    Dreyer R; Pfukwa R; Barth S; Hunter R; Klumperman B
    Biomacromolecules; 2023 Feb; 24(2):517-530. PubMed ID: 36607253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.