BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27391930)

  • 61. A fusogenic dengue virus-derived peptide enhances antitumor efficacy of an antibody-ribonuclease fusion protein targeting the EGF receptor.
    Kiesgen S; Liebers N; Cremer M; Arnold U; Weber T; Keller A; Herold-Mende C; Dyckhoff G; Jäger D; Kontermann RE; Arndt MA; Krauss J
    Protein Eng Des Sel; 2014 Oct; 27(10):331-7. PubMed ID: 25301960
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Green fluorescent-conjugated anti-CEA single chain antibody for the detection of CEA-positive cancer cells.
    Salavatifar M; Amin S; Jahromi ZM; Rasgoo N; Rastgoo N; Arbabi M
    Hybridoma (Larchmt); 2011 Jun; 30(3):229-38. PubMed ID: 21707357
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Substrates for improved live-cell fluorescence labeling of SNAP-tag.
    Corrêa IR; Baker B; Zhang A; Sun L; Provost CR; Lukinavičius G; Reymond L; Johnsson K; Xu MQ
    Curr Pharm Des; 2013; 19(30):5414-20. PubMed ID: 23431983
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous and Independent Dual Site-Specific Self-Labeling of Recombinant Antibodies.
    Wollschlaeger C; Meinhold-Heerlein I; Cong X; Bräutigam K; Di Fiore S; Zeppernick F; Klockenbring T; Stickeler E; Barth S; Hussain AF
    Bioconjug Chem; 2018 Nov; 29(11):3586-3594. PubMed ID: 30289242
    [TBL] [Abstract][Full Text] [Related]  

  • 65. SNAP-Tag-Based Subcellular Protein Labeling and Fluorescent Imaging with Naphthalimides.
    Wang C; Song X; Xiao Y
    Chembiochem; 2017 Sep; 18(17):1762-1769. PubMed ID: 28632960
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Applications of SNAP-tag technology in skin cancer therapy.
    Padayachee ER; Adeola HA; Van Wyk JC; Nsole Biteghe FA; Chetty S; Khumalo NP; Barth S
    Health Sci Rep; 2019 Feb; 2(2):e103. PubMed ID: 30809593
    [TBL] [Abstract][Full Text] [Related]  

  • 67. SNAP-tag as a tool for surface immobilization.
    Engin S; Fichtner D; Wedlich D; Fruk L
    Curr Pharm Des; 2013; 19(30):5443-8. PubMed ID: 23431987
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences.
    König F; Schubert T; Längst G
    PLoS One; 2017; 12(6):e0178875. PubMed ID: 28594954
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Using the SNAP-Tag technology to easily measure and demonstrate apoptotic changes in cancer and blood cells with different dyes.
    Woitok M; Grieger E; Akinrinmade OA; Bethke S; Pham AT; Stein C; Fendel R; Fischer R; Barth S; Niesen J
    PLoS One; 2020; 15(12):e0243286. PubMed ID: 33270761
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development and validation of scFv-conjugated affinity silk protein for specific detection of carcinoembryonic antigen.
    Sato M; Kitani H; Kojima K
    Sci Rep; 2017 Nov; 7(1):16077. PubMed ID: 29167497
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Targeting and Covalently Immobilizing the EGFR through SNAP-Tag Technology for Screening Drug Leads.
    Fu J; Jia Q; Liang P; Wang S; Zhou H; Zhang L; Gao C; Wang H; Lv Y; Han S
    Anal Chem; 2021 Aug; 93(34):11719-11728. PubMed ID: 34415741
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma.
    Malindi Z; Barth S; Abrahamse H
    Biomedicines; 2022 Sep; 10(9):. PubMed ID: 36140259
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets.
    Macias-Contreras M; Little KN; Zhu L
    Methods Enzymol; 2020; 638():233-257. PubMed ID: 32416915
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6.
    Phillips DD; Garboczi DN; Singh K; Hu Z; Leppla SH; Leysath CE
    J Mol Recognit; 2013 Aug; 26(8):376-81. PubMed ID: 23784994
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optimized immobilization of single chain variable fragment antibody onto non-toxic fluorescent nanoparticles for efficient preparation of a bioprobe.
    Tateo S; Shinchi H; Matsumoto H; Nagata N; Hashimoto M; Wakao M; Suda Y
    Colloids Surf B Biointerfaces; 2023 Apr; 224():113192. PubMed ID: 36791518
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Blue fluorescent dye-protein complexes based on fluorogenic cyanine dyes and single chain antibody fragments.
    Zanotti KJ; Silva GL; Creeger Y; Robertson KL; Waggoner AS; Berget PB; Armitage BA
    Org Biomol Chem; 2011 Feb; 9(4):1012-20. PubMed ID: 21180706
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Click Chemistry-Generated Auristatin F-Linker-Benzylguanine for a SNAP-Tag-Based Recombinant Antibody-Drug Conjugate Demonstrating Selective Cytotoxicity toward EGFR-Overexpressing Tumor Cells.
    Huysamen AM; Fadeyi OE; Mayuni G; Dogbey DM; Mungra N; Biteghe FAN; Hardcastle N; Ramamurthy D; Akinrinmade OA; Naran K; Cooper S; Lang D; Richter W; Hunter R; Barth S
    ACS Omega; 2023 Jan; 8(4):4026-4037. PubMed ID: 36743041
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.
    Haun JB; Pepper LR; Boder ET; Hammer DA
    Langmuir; 2011 Nov; 27(22):13701-12. PubMed ID: 21942413
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Photo-SNAP-tag, a Light-Regulated Chemical Labeling System.
    Cleveland JD; Tucker CL
    ACS Chem Biol; 2020 Aug; 15(8):2212-2220. PubMed ID: 32623878
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A single-chain-variable-fragment fluorescence biosensor activates fluorogens from dissimilar chemical families.
    Gallo E; Wienbar S; Snyder AC; Vasilev KV; Armitage BA; Jarvik JW
    Protein Pept Lett; 2014; 21(12):1289-94. PubMed ID: 24939660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.