These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27392014)

  • 1. Graphene nanoribbons anchored to SiC substrates.
    Le NB; Woods LM
    J Phys Condens Matter; 2016 Sep; 28(36):364001. PubMed ID: 27392014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate.
    Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D
    Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Investigation of the Interfaces and Mechanisms of Induced Spin Polarization of 1D Narrow Zigzag Graphene- and h-BN Nanoribbons on a SrO-Terminated LSMO(001) Surface.
    Avramov P; Kuzubov AA; Kuklin AV; Lee H; Kovaleva EA; Sakai S; Entani S; Naramoto H; Sorokin PB
    J Phys Chem A; 2017 Jan; 121(3):680-689. PubMed ID: 28075136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.
    Correa JD; Orellana PA; Pacheco M
    Nanomaterials (Basel); 2017 Mar; 7(3):. PubMed ID: 28336904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic states of graphene nanoribbons and analytical solutions.
    Wakabayashi K; Sasaki KI; Nakanishi T; Enoki T
    Sci Technol Adv Mater; 2010 Oct; 11(5):054504. PubMed ID: 27877361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) surface of Cu, Ag, and Au.
    Li Y; Zhang W; Morgenstern M; Mazzarello R
    Phys Rev Lett; 2013 May; 110(21):216804. PubMed ID: 23745911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study.
    Liang Y; Wang V; Mizuseki H; Kawazoe Y
    J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter.
    Chakrabarty S; Wasey AHMA; Thapa R; Das GP
    Nanotechnology; 2018 Aug; 29(34):345203. PubMed ID: 29862988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-surface synthesis of graphene nanoribbons with zigzag edge topology.
    Ruffieux P; Wang S; Yang B; Sánchez-Sánchez C; Liu J; Dienel T; Talirz L; Shinde P; Pignedoli CA; Passerone D; Dumslaff T; Feng X; Müllen K; Fasel R
    Nature; 2016 Mar; 531(7595):489-92. PubMed ID: 27008967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic edge states and coherent manipulation of graphene nanoribbons.
    Slota M; Keerthi A; Myers WK; Tretyakov E; Baumgarten M; Ardavan A; Sadeghi H; Lambert CJ; Narita A; Müllen K; Bogani L
    Nature; 2018 May; 557(7707):691-695. PubMed ID: 29849157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and transport properties of boron-doped graphene nanoribbons.
    Martins TB; Miwa RH; da Silva AJ; Fazzio A
    Phys Rev Lett; 2007 May; 98(19):196803. PubMed ID: 17677646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review.
    Kumar S; Pratap S; Kumar V; Mishra RK; Gwag JS; Chakraborty B
    Luminescence; 2023 Jul; 38(7):909-953. PubMed ID: 35850156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and electronic structure of edge-doped graphene nanoribbons with F, O, and Cl atoms.
    Piriz S; Fernández-Werner L; Pardo H; Jasen P; Faccio R; Mombrú ÁW
    Phys Chem Chem Phys; 2017 Aug; 19(32):21474-21480. PubMed ID: 28759072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of edge-dependent optical selection rules for graphene nanoribbons.
    Chung HC; Lee MH; Chang CP; Lin MF
    Opt Express; 2011 Nov; 19(23):23350-63. PubMed ID: 22109212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.