These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27392046)

  • 1. A Robust Speaker Identification System Using the Responses from a Model of the Auditory Periphery.
    Islam MA; Jassim WA; Cheok NS; Zilany MS
    PLoS One; 2016; 11(7):e0158520. PubMed ID: 27392046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram.
    Hossain ME; Jassim WA; Zilany MS
    PLoS One; 2016; 11(3):e0150415. PubMed ID: 26967160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectro-temporal modulation energy based mask for robust speaker identification.
    Chi TS; Lin TH; Hsu CC
    J Acoust Soc Am; 2012 May; 131(5):EL368-74. PubMed ID: 22559454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-robust text-dependent speaker identification using cochlear models.
    Islam MA; Xu Y; Monk T; Afshar S; van Schaik A
    J Acoust Soc Am; 2022 Jan; 151(1):500. PubMed ID: 35105043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The robustness of speech representations obtained from simulated auditory nerve fibers under different noise conditions.
    Jürgens T; Brand T; Clark NR; Meddis R; Brown GJ
    J Acoust Soc Am; 2013 Sep; 134(3):EL282-8. PubMed ID: 23968061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of a priori signal-to-noise ratio using neurograms for speech enhancement.
    Jassim WA; Harte N
    J Acoust Soc Am; 2020 Jun; 147(6):3830. PubMed ID: 32611151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory-model based robust feature selection for speech recognition.
    Koniaris C; Kuropatwinski M; Kleijn WB
    J Acoust Soc Am; 2010 Feb; 127(2):EL73-9. PubMed ID: 20136182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-robust speech triage.
    Bartos AL; Cipr T; Nelson DJ; Schwarz P; Banowetz J; Jerabek L
    J Acoust Soc Am; 2018 Apr; 143(4):2313. PubMed ID: 29716295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of auditory perception as front end for automatic speech recognition.
    Tchorz J; Kollmeier B
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2040-50. PubMed ID: 10530027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bio-inspired feature extraction for robust speech recognition.
    Zouhir Y; Ouni K
    Springerplus; 2014; 3():651. PubMed ID: 25485194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
    Schafer PB; Jin DZ
    Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cepstral representation of speech motivated by time-frequency masking: an application to speech recognition.
    Aikawa K; Singer H; Kawahara H; Tohkura Y
    J Acoust Soc Am; 1996 Jul; 100(1):603-14. PubMed ID: 8675851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Cochlear Implant Users' Ability for Speaker Identification using CI Auditory Stimuli.
    Mamun N; Ghosh R; Hansen JHL
    Interspeech; 2019 Sep; 2019():3118-3122. PubMed ID: 34307642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Mandarin tone and speech perception between advanced combination encoder and continuous interleaved sampling speech-processing strategies in children.
    Hwang CF; Chen HC; Yang CH; Peng JP; Weng CH
    Am J Otolaryngol; 2012; 33(3):338-44. PubMed ID: 21982716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance enhancement for audio-visual speaker identification using dynamic facial muscle model.
    Asadpour V; Towhidkhah F; Homayounpour MM
    Med Biol Eng Comput; 2006 Oct; 44(10):919-30. PubMed ID: 17031716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation.
    Choi YS; Lee SY
    Neural Netw; 2013 Sep; 45():62-9. PubMed ID: 23558292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New transformed features generated by deep bottleneck extractor and a GMM-UBM classifier for speaker age and gender classification.
    Mallouh AA; Qawaqneh Z; Barkana BD
    Neural Comput Appl; 2018; 30(8):2581-2593. PubMed ID: 30363735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speaker diarization during noisy clinical diagnoses of autism.
    Gorodetski A; Dinstein I; Zigel Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2593-2596. PubMed ID: 31946427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.