BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27392095)

  • 1. HnRNP Q Has a Suppressive Role in the Translation of Mouse Cryptochrome1.
    Lim I; Jung Y; Kim DY; Kim KT
    PLoS One; 2016; 11(7):e0159018. PubMed ID: 27392095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PTBP1 Positively Regulates the Translation of Circadian Clock Gene,
    Kim W; Shin JC; Lee KH; Kim KT
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32967200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RNA-binding protein hnRNP Q represses translation of the clock gene
    Jung Y; Ryu HG; Kim SW; Lee KH; Gu S; Yi H; Ku HO; Jang SK; Kim KT
    J Biol Chem; 2019 May; 294(19):7682-7691. PubMed ID: 30948510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. hnRNP Q mediates a phase-dependent translation-coupled mRNA decay of mouse Period3.
    Kim DY; Kwak E; Kim SH; Lee KH; Woo KC; Kim KT
    Nucleic Acids Res; 2011 Nov; 39(20):8901-14. PubMed ID: 21785138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb alpha via IRES-mediated translation.
    Kim DY; Woo KC; Lee KH; Kim TD; Kim KT
    Nucleic Acids Res; 2010 Nov; 38(20):7068-78. PubMed ID: 20576698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AUF1 contributes to Cryptochrome1 mRNA degradation and rhythmic translation.
    Lee KH; Kim SH; Kim HJ; Kim W; Lee HR; Jung Y; Choi JH; Hong KY; Jang SK; Kim KT
    Nucleic Acids Res; 2014 Apr; 42(6):3590-606. PubMed ID: 24423872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian amplitude of cryptochrome 1 is modulated by mRNA stability regulation via cytoplasmic hnRNP D oscillation.
    Woo KC; Ha DC; Lee KH; Kim DY; Kim TD; Kim KT
    Mol Cell Biol; 2010 Jan; 30(1):197-205. PubMed ID: 19858287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhythmic interaction between Period1 mRNA and hnRNP Q leads to circadian time-dependent translation.
    Lee KH; Woo KC; Kim DY; Kim TD; Shin J; Park SM; Jang SK; Kim KT
    Mol Cell Biol; 2012 Feb; 32(3):717-28. PubMed ID: 22124155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal ribosomal entry site-mediated translation is important for rhythmic PERIOD1 expression.
    Lee KH; Kim SH; Kim DY; Kim S; Kim KT
    PLoS One; 2012; 7(5):e37936. PubMed ID: 22662251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation.
    Lee KH; Kim SH; Lee HR; Kim W; Kim DY; Shin JC; Yoo SH; Kim KT
    Mol Biol Cell; 2013 Jul; 24(14):2248-55. PubMed ID: 23699394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. hnRNP Q regulates translation of p53 in normal and stress conditions.
    Kim DY; Kim W; Lee KH; Kim SH; Lee HR; Kim HJ; Jung Y; Choi JH; Kim KT
    Cell Death Differ; 2013 Feb; 20(2):226-34. PubMed ID: 22935615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production.
    Kim TD; Woo KC; Cho S; Ha DC; Jang SK; Kim KT
    Genes Dev; 2007 Apr; 21(7):797-810. PubMed ID: 17403780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmic control of mRNA stability modulates circadian amplitude of mouse Period3 mRNA.
    Kim SH; Lee KH; Kim DY; Kwak E; Kim S; Kim KT
    J Neurochem; 2015 Mar; 132(6):642-56. PubMed ID: 25581122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous nuclear ribonucleoprotein E1 regulates protein disulphide isomerase translation in oxidized low-density lipoprotein-activated endothelial cells.
    Meng N; Peng N; Huang S; Wang SQ; Zhao J; Su L; Zhang Y; Zhang S; Zhao B; Miao J
    Acta Physiol (Oxf); 2015 Mar; 213(3):664-75. PubMed ID: 25389050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of proteins specifically interacting with YB-1 mRNA 3' UTR and the effect of hnRNP Q on YB-1 mRNA translation.
    Lyabin DN; Nigmatullina LF; Doronin AN; Eliseeva IA; Ovchinnikov LP
    Biochemistry (Mosc); 2013 Jun; 78(6):651-9. PubMed ID: 23980891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation.
    Williams KR; McAninch DS; Stefanovic S; Xing L; Allen M; Li W; Feng Y; Mihailescu MR; Bassell GJ
    Mol Biol Cell; 2016 Feb; 27(3):518-34. PubMed ID: 26658614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhythmic serotonin N-acetyltransferase mRNA degradation is essential for the maintenance of its circadian oscillation.
    Kim TD; Kim JS; Kim JH; Myung J; Chae HD; Woo KC; Jang SK; Koh DS; Kim KT
    Mol Cell Biol; 2005 Apr; 25(8):3232-46. PubMed ID: 15798208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational Control in
    Swiatkowska A; Dutkiewicz M; Zydowicz-Machtel P; Szpotkowska J; Janecki DM; Ciesiołka J
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31671760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleocytoplasmic shuttling of clock proteins.
    Tamanini F; Yagita K; Okamura H; van der Horst GT
    Methods Enzymol; 2005; 393():418-35. PubMed ID: 15817303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism.
    Kunze MM; Benz F; Brauß TF; Lampe S; Weigand JE; Braun J; Richter FM; Wittig I; Brüne B; Schmid T
    Biochim Biophys Acta; 2016 Jul; 1859(7):848-59. PubMed ID: 27168114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.