These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27392211)

  • 1. Sequence-Specific Incorporation of Enzyme-Nucleotide Chimera by DNA Polymerases.
    Welter M; Verga D; Marx A
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10131-5. PubMed ID: 27392211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases.
    Hottin A; Marx A
    Acc Chem Res; 2016 Mar; 49(3):418-27. PubMed ID: 26947566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Application of Enzyme-Nucleotide Conjugates.
    Welter M; Marx A
    Curr Protoc Chem Biol; 2018 Mar; 10(1):49-71. PubMed ID: 30040238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Getting it Right: How DNA Polymerases Select the Right Nucleotide.
    Ludmann S; Marx A
    Chimia (Aarau); 2016; 70(3):203-6. PubMed ID: 27052761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reexamination of the nucleotide incorporation fidelity of DNA polymerases.
    Showalter AK; Tsai MD
    Biochemistry; 2002 Aug; 41(34):10571-6. PubMed ID: 12186540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly conserved lysine residue in phi29 DNA polymerase is important for correct binding of the templating nucleotide during initiation of phi29 DNA replication.
    Truniger V; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 2002 Apr; 318(1):83-96. PubMed ID: 12054770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of a GAG hinge in the nucleotide-induced conformational change governing nucleotide specificity by T7 DNA polymerase.
    Jin Z; Johnson KA
    J Biol Chem; 2011 Jan; 286(2):1312-22. PubMed ID: 20978284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerases and biotechnological applications.
    Aschenbrenner J; Marx A
    Curr Opin Biotechnol; 2017 Dec; 48():187-195. PubMed ID: 28618333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Getting a grip: polymerases and their substrate complexes.
    Jäger J; Pata JD
    Curr Opin Struct Biol; 1999 Feb; 9(1):21-8. PubMed ID: 10047577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2'-Deoxy-6-thioguanosine 5'-triphosphate as a substrate for purified human DNA polymerases and calf thymus terminal deoxynucleotidyltransferase in vitro.
    Ling YH; Nelson JA; Cheng YC; Anderson RS; Beattie KL
    Mol Pharmacol; 1991 Oct; 40(4):508-14. PubMed ID: 1921985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase activity at the single-molecule level.
    Gill JP; Wang J; Millar DP
    Biochem Soc Trans; 2011 Apr; 39(2):595-9. PubMed ID: 21428946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Structure of an Archaeal B-Family DNA Polymerase in Complex with a Chemically Modified Nucleotide.
    Kropp HM; Diederichs K; Marx A
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5457-5461. PubMed ID: 30761722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids.
    Goubet A; Chardon A; Kumar P; Sharma PK; Veedu RN
    Bioorg Med Chem Lett; 2013 Feb; 23(3):761-3. PubMed ID: 23265899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Basis for the KlenTaq DNA Polymerase Catalysed Incorporation of Alkene- versus Alkyne-Modified Nucleotides.
    Hottin A; Betz K; Diederichs K; Marx A
    Chemistry; 2017 Feb; 23(9):2109-2118. PubMed ID: 27901305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the enzymatic incorporation of an imidazole nucleotide into DNA.
    Röthlisberger P; Levi-Acobas F; Sarac I; Marlière P; Herdewijn P; Hollenstein M
    Org Biomol Chem; 2017 May; 15(20):4449-4455. PubMed ID: 28485736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases.
    Xie P
    Theor Biol Med Model; 2011 Jun; 8():22. PubMed ID: 21699732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase.
    Cramer J; Rangam G; Marx A; Restle T
    Chembiochem; 2008 May; 9(8):1243-50. PubMed ID: 18399510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence.
    DeLucia AM; Grindley ND; Joyce CM
    Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering DNA polymerase incorporation fidelity by distorting the dNTP binding pocket with a bulky carcinogen-damaged template.
    Yan SF; Wu M; Geacintov NE; Broyde S
    Biochemistry; 2004 Jun; 43(24):7750-65. PubMed ID: 15196018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.