These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27392275)

  • 1. Two-photon absorption in gapped bilayer graphene with a tunable chemical potential.
    Brinkley MK; Abergel DS; Clader BD
    J Phys Condens Matter; 2016 Sep; 28(36):365001. PubMed ID: 27392275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Photoresponse by Gate Modulation in Bilayer Graphene Nanoribbon Devices.
    Wang R; Bi F; Lu W; Yam C
    J Phys Chem Lett; 2019 Dec; 10(24):7719-7724. PubMed ID: 31777243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast dynamics of massive dirac fermions in bilayer graphene.
    Ulstrup S; Johannsen JC; Cilento F; Miwa JA; Crepaldi A; Zacchigna M; Cacho C; Chapman R; Springate E; Mammadov S; Fromm F; Raidel C; Seyller T; Parmigiani F; Grioni M; King PD; Hofmann P
    Phys Rev Lett; 2014 Jun; 112(25):257401. PubMed ID: 25014829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Tunable Terahertz Metamaterial Absorber Composed of Hourglass-Shaped Graphene Arrays.
    Qi Y; Zhang Y; Liu C; Zhang T; Zhang B; Wang L; Deng X; Wang X; Yu Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32192053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles investigations of manganese oxide (MnO
    Muhammad R; Shuai Y; Irfan A; He-Ping T
    RSC Adv; 2018 Jun; 8(42):23688-23697. PubMed ID: 35540279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marginally Self-Averaging One-Dimensional Localization in Bilayer Graphene.
    Aamir MA; Karnatak P; Jayaraman A; Sai TP; Ramakrishnan TV; Sensarma R; Ghosh A
    Phys Rev Lett; 2018 Sep; 121(13):136806. PubMed ID: 30312065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multifunctional material of two-dimensional g-C
    Cui J; Liang S; Zhang J
    Phys Chem Chem Phys; 2016 Sep; 18(36):25388-25393. PubMed ID: 27711444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population inversion in monolayer and bilayer graphene.
    Gierz I; Mitrano M; Petersen JC; Cacho C; Turcu IC; Springate E; Stöhr A; Köhler A; Starke U; Cavalleri A
    J Phys Condens Matter; 2015 Apr; 27(16):164204. PubMed ID: 25835083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable band gaps in graphene/GaN van der Waals heterostructures.
    Huang L; Yue Q; Kang J; Li Y; Li J
    J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering.
    Li X; Dai Y; Ma Y; Han S; Huang B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4230-5. PubMed ID: 24452306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain size control in the fabrication of large single-crystal bilayer graphene structures.
    Gan L; Zhang H; Wu R; Zhang Q; Ou X; Ding Y; Sheng P; Luo Z
    Nanoscale; 2015 Feb; 7(6):2391-9. PubMed ID: 25563192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular doping and band-gap opening of bilayer graphene.
    Samuels AJ; Carey JD
    ACS Nano; 2013 Mar; 7(3):2790-9. PubMed ID: 23414110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhomogenous electronic structure, transport gap, and percolation threshold in disordered bilayer graphene.
    Rossi E; Das Sarma S
    Phys Rev Lett; 2011 Oct; 107(15):155502. PubMed ID: 22107299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable band gap in hydrogenated bilayer graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2010 Jul; 4(7):4126-30. PubMed ID: 20536219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitonic effects on the optical response of graphene and bilayer graphene.
    Yang L; Deslippe J; Park CH; Cohen ML; Louie SG
    Phys Rev Lett; 2009 Oct; 103(18):186802. PubMed ID: 19905823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable excitons in biased bilayer graphene.
    Park CH; Louie SG
    Nano Lett; 2010 Feb; 10(2):426-31. PubMed ID: 20078108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of large-area bilayer graphene synthesis by chemical vapor deposition.
    Fang W; Hsu AL; Song Y; Kong J
    Nanoscale; 2015 Dec; 7(48):20335-51. PubMed ID: 26604157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.