These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 27392307)
1. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Marchin RM; Broadhead AA; Bostic LE; Dunn RR; Hoffmann WA Plant Cell Environ; 2016 Oct; 39(10):2221-34. PubMed ID: 27392307 [TBL] [Abstract][Full Text] [Related]
2. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Carins Murphy MR; Jordan GJ; Brodribb TJ Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831 [TBL] [Abstract][Full Text] [Related]
3. Tree water dynamics in a drying and warming world. Grossiord C; Sevanto S; Borrego I; Chan AM; Collins AD; Dickman LT; Hudson PJ; McBranch N; Michaletz ST; Pockman WT; Ryan M; Vilagrosa A; McDowell NG Plant Cell Environ; 2017 Sep; 40(9):1861-1873. PubMed ID: 28556263 [TBL] [Abstract][Full Text] [Related]
4. Seasonal change in response of stomatal conductance to vapor pressure deficit and three phytohormones in three tree species. Li J; Zhang GZ; Li X; Wang Y; Wang FZ; Li XM Plant Signal Behav; 2019; 14(12):1682341. PubMed ID: 31668123 [TBL] [Abstract][Full Text] [Related]
5. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles? Burkhardt J; Pariyar S Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():91-100. PubMed ID: 26417842 [TBL] [Abstract][Full Text] [Related]
6. Coping with extremes: Responses of Quercus robur L. and Fagus sylvatica L. to soil drought and elevated vapour pressure deficit. Niemczyk M; Wrzesiński P; Szyp-Borowska I; Krajewski S; Żytkowiak R; Jagodziński AM Sci Total Environ; 2024 Oct; 948():174912. PubMed ID: 39038682 [TBL] [Abstract][Full Text] [Related]
7. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L. Rasheed F; Dreyer E; Richard B; Brignolas F; Brendel O; Le Thiec D Plant Cell Environ; 2015 Apr; 38(4):670-84. PubMed ID: 25099629 [TBL] [Abstract][Full Text] [Related]
9. Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat. Ranawana SRWMCJK; Siddique KHM; Palta JA; Stefanova K; Bramley H Funct Plant Biol; 2021 Aug; 48(9):839-850. PubMed ID: 33934747 [TBL] [Abstract][Full Text] [Related]
10. Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs. Ghimire CP; Bruijnzeel LA; Lubczynski MW; Zwartendijk BW; Odongo VO; Ravelona M; van Meerveld HJI Tree Physiol; 2018 Jul; 38(7):1053-1070. PubMed ID: 29688549 [TBL] [Abstract][Full Text] [Related]
11. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
12. Dry inside: progressive unsaturation within leaves with increasing vapour pressure deficit affects estimation of key leaf gas exchange parameters. Diao H; Cernusak LA; Saurer M; Gessler A; Siegwolf RTW; Lehmann MM New Phytol; 2024 Nov; 244(4):1275-1287. PubMed ID: 39205457 [TBL] [Abstract][Full Text] [Related]
13. Different model assumptions about plant hydraulics and photosynthetic temperature acclimation yield diverging implications for tropical forest gross primary production under warming. Zarakas CM; Swann ALS; Koven CD; Smith MN; Taylor TC Glob Chang Biol; 2024 Sep; 30(9):e17449. PubMed ID: 39301722 [TBL] [Abstract][Full Text] [Related]
14. Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning. Aliniaeifard S; van Meeteren U J Exp Bot; 2014 Dec; 65(22):6529-42. PubMed ID: 25205580 [TBL] [Abstract][Full Text] [Related]
15. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. Will RE; Wilson SM; Zou CB; Hennessey TC New Phytol; 2013 Oct; 200(2):366-374. PubMed ID: 23718199 [TBL] [Abstract][Full Text] [Related]
16. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen deposition increases xylem hydraulic sensitivity but decreases stomatal sensitivity to water potential in two temperate deciduous tree species. Fan DY; Dang QL; Yang XF; Liu XM; Wang JY; Zhang SR Sci Total Environ; 2022 Nov; 848():157840. PubMed ID: 35934026 [TBL] [Abstract][Full Text] [Related]
18. Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: impacts on the whole-plant transpiration efficiency of poplar genotypes. Durand M; Brendel O; Buré C; Le Thiec D New Phytol; 2019 Jun; 222(4):1789-1802. PubMed ID: 30681725 [TBL] [Abstract][Full Text] [Related]
19. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. Slot M; Rifai SW; Eze CE; Winter K New Phytol; 2024 Nov; 244(4):1238-1249. PubMed ID: 38736030 [TBL] [Abstract][Full Text] [Related]
20. Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Motzer T; Munz N; Küppers M; Schmitt D; Anhuf D Tree Physiol; 2005 Oct; 25(10):1283-93. PubMed ID: 16076777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]