These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 27392337)

  • 1. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.
    Hamner SR; Seth A; Steele KM; Delp SL
    J Biomech; 2013 Jun; 46(10):1772-6. PubMed ID: 23702045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full body musculoskeletal model for simulations of gait in persons with transtibial amputation.
    Willson AM; Anderson AJ; Richburg CA; Muir BC; Czerniecki J; Steele KM; Aubin PM
    Comput Methods Biomech Biomed Engin; 2023 Mar; 26(4):412-423. PubMed ID: 35499924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models.
    Roelker SA; Caruthers EJ; Baker RK; Pelz NC; Chaudhari AMW; Siston RA
    Ann Biomed Eng; 2017 Nov; 45(11):2635-2647. PubMed ID: 28779473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations.
    S Shourijeh M; Smale KB; Potvin BM; Benoit DL
    J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation.
    Raabe ME; Chaudhari AMW
    J Biomech; 2016 May; 49(7):1238-1243. PubMed ID: 26947033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why are Antagonist Muscles Co-activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks.
    Lai AKM; Arnold AS; Wakeling JM
    Ann Biomed Eng; 2017 Dec; 45(12):2762-2774. PubMed ID: 28900782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
    Seth A; Hicks JL; Uchida TK; Habib A; Dembia CL; Dunne JJ; Ong CF; DeMers MS; Rajagopal A; Millard M; Hamner SR; Arnold EM; Yong JR; Lakshmikanth SK; Sherman MA; Ku JP; Delp SL
    PLoS Comput Biol; 2018 Jul; 14(7):e1006223. PubMed ID: 30048444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle-driven simulations and experimental data of cycling.
    Clancy CE; Gatti AA; Ong CF; Maly MR; Delp SL
    Sci Rep; 2023 Dec; 13(1):21534. PubMed ID: 38057337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds.
    Hamner SR; Delp SL
    J Biomech; 2013 Feb; 46(4):780-7. PubMed ID: 23246045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EMG-based, muscle driven forward simulation of single support phase of gait.
    Jonkers I; Spaepen A; Papaioannou G; Stewart C
    J Biomech; 2002 May; 35(5):609-19. PubMed ID: 11955500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations.
    Myers CA; Laz PJ; Shelburne KB; Davidson BS
    Ann Biomed Eng; 2015 May; 43(5):1098-111. PubMed ID: 25404535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional resistance training during walking: Mode of application differentially affects gait biomechanics and muscle activation patterns.
    Washabaugh EP; Augenstein TE; Krishnan C
    Gait Posture; 2020 Jan; 75():129-136. PubMed ID: 31678694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations.
    Ong CF; Geijtenbeek T; Hicks JL; Delp SL
    PLoS Comput Biol; 2019 Oct; 15(10):e1006993. PubMed ID: 31589597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking.
    Martín-Sosa E; Martínez-Reina J; Mayo J; Ojeda J
    PLoS One; 2019; 14(9):e0222491. PubMed ID: 31553756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.