These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27392431)

  • 1. NeuroRDF: semantic integration of highly curated data to prioritize biomarker candidates in Alzheimer's disease.
    Iyappan A; Kawalia SB; Raschka T; Hofmann-Apitius M; Senger P
    J Biomed Semantics; 2016 Jul; 7():45. PubMed ID: 27392431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking hypothetical knowledge patterns to disease molecular signatures for biomarker discovery in Alzheimer's disease.
    Malhotra A; Younesi E; Bagewadi S; Hofmann-Apitius M
    Genome Med; 2014; 6(11):97. PubMed ID: 25484918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring and linking biomedical resources through multidimensional semantic spaces.
    Berlanga R; Jiménez-Ruiz E; Nebot V
    BMC Bioinformatics; 2012 Jan; 13 Suppl 1(Suppl 1):S6. PubMed ID: 22373409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical Strategy to Prioritize Alzheimer's Disease Candidate Genes in Gene Regulatory Networks Using Public Expression Data.
    Kawalia SB; Raschka T; Naz M; de Matos Simoes R; Senger P; Hofmann-Apitius M
    J Alzheimers Dis; 2017; 59(4):1237-1254. PubMed ID: 28800327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of Cerebrotendinous xanthomatosis.
    Taboada M; Martínez D; Pilo B; Jiménez-Escrig A; Robinson PN; Sobrido MJ
    BMC Med Inform Decis Mak; 2012 Jul; 12():78. PubMed ID: 22849591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KaBOB: ontology-based semantic integration of biomedical databases.
    Livingston KM; Bada M; Baumgartner WA; Hunter LE
    BMC Bioinformatics; 2015 Apr; 16(1):126. PubMed ID: 25903923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining on Alzheimer's diseases related knowledge graph to identity potential AD-related semantic triples for drug repurposing.
    Nian Y; Hu X; Zhang R; Feng J; Du J; Li F; Bu L; Zhang Y; Chen Y; Tao C
    BMC Bioinformatics; 2022 Sep; 23(Suppl 6):407. PubMed ID: 36180861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knowledge Discovery from Biomedical Ontologies in Cross Domains.
    Shen F; Lee Y
    PLoS One; 2016; 11(8):e0160005. PubMed ID: 27548262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching.
    Kiourtis A; Nifakos S; Mavrogiorgou A; Kyriazis D
    Int J Med Inform; 2019 Dec; 132():104002. PubMed ID: 31629311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a view-oriented approach for aligning RDF-based biomedical repositories.
    Anguita A; García-Remesal M; de la Iglesia D; Graf N; Maojo V
    Methods Inf Med; 2015; 54(1):50-5. PubMed ID: 24777240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.
    Bagewadi S; Adhikari S; Dhrangadhariya A; Irin AK; Ebeling C; Namasivayam AA; Page M; Hofmann-Apitius M; Senger P
    Database (Oxford); 2015; 2015():. PubMed ID: 26475471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
    Gupta S; Ross KE; Tudor CO; Wu CH; Schmidt CJ; Vijay-Shanker K
    J Biomed Semantics; 2016 Apr; 7(1):9. PubMed ID: 27216254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AlzPharm: integration of neurodegeneration data using RDF.
    Lam HY; Marenco L; Clark T; Gao Y; Kinoshita J; Shepherd G; Miller P; Wu E; Wong GT; Liu N; Crasto C; Morse T; Stephens S; Cheung KH
    BMC Bioinformatics; 2007 May; 8 Suppl 3(Suppl 3):S4. PubMed ID: 17493287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gauging triple stores with actual biological data.
    Mironov V; Seethappan N; Blondé W; Antezana E; Splendiani A; Kuiper M
    BMC Bioinformatics; 2012 Jan; 13 Suppl 1(Suppl 1):S3. PubMed ID: 22373359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Axiomatically-Rich Ontologies in Transforming Medical Data to Knowledge.
    Brochhausen M; Bona J; Blobel B
    Stud Health Technol Inform; 2018; 249():38-49. PubMed ID: 29866954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ontology-guided semantic data integration framework to support integrative data analysis of cancer survival.
    Zhang H; Guo Y; Li Q; George TJ; Shenkman E; Modave F; Bian J
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):41. PubMed ID: 30066664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linked open data-based framework for automatic biomedical ontology generation.
    Alobaidi M; Malik KM; Sabra S
    BMC Bioinformatics; 2018 Sep; 19(1):319. PubMed ID: 30200874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantic biomedical resource discovery: a Natural Language Processing framework.
    Sfakianaki P; Koumakis L; Sfakianakis S; Iatraki G; Zacharioudakis G; Graf N; Marias K; Tsiknakis M
    BMC Med Inform Decis Mak; 2015 Sep; 15():77. PubMed ID: 26423616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semantic relationship mining method among disorders, genes, and drugs from different biomedical datasets.
    Zhang L; Hu J; Xu Q; Li F; Rao G; Tao C
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 4):283. PubMed ID: 33317518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.