These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27392454)

  • 1. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate.
    Wicht DK
    Arch Biochem Biophys; 2016 Aug; 604():159-66. PubMed ID: 27392454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of the two-component flavin-dependent methanesulfinate monooxygenase within bacterial sulfur assimilation.
    Soule J; Gnann AD; Gonzalez R; Parker MJ; McKenna KC; Nguyen SV; Phan NT; Wicht DK; Dowling DP
    Biochem Biophys Res Commun; 2020 Jan; 522(1):107-112. PubMed ID: 31753487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: Using hydrogen peroxide for monooxygenation and substrate cleavage.
    Mangkalee M; Oonanant W; Aonbangkhen C; Pimviriyakul P; Tinikul R; Chaiyen P; Insin N; Sucharitakul J
    FEBS J; 2023 Nov; 290(21):5171-5195. PubMed ID: 37522421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization.
    Endoh T; Habe H; Nojiri H; Yamane H; Omori T
    Mol Microbiol; 2005 Feb; 55(3):897-911. PubMed ID: 15661012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of two-component flavin-dependent monooxygenase systems.
    Robbins JM; Ellis HR
    Methods Enzymol; 2019; 620():399-422. PubMed ID: 31072495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of flavin reduction in the alkanesulfonate monooxygenase system.
    Gao B; Ellis HR
    Biochim Biophys Acta; 2007 Mar; 1774(3):359-67. PubMed ID: 17289450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli.
    Coves J; Zeghouf M; Macherel D; Guigliarelli B; Asso M; Fontecave M
    Biochemistry; 1997 May; 36(19):5921-8. PubMed ID: 9153434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LuxG is a functioning flavin reductase for bacterial luminescence.
    Nijvipakul S; Wongratana J; Suadee C; Entsch B; Ballou DP; Chaiyen P
    J Bacteriol; 2008 Mar; 190(5):1531-8. PubMed ID: 18156264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli.
    Abdurachim K; Ellis HR
    J Bacteriol; 2006 Dec; 188(23):8153-9. PubMed ID: 16997955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme.
    Gao B; Ellis HR
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1137-45. PubMed ID: 15882995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of a Flavin-Free FMN Reductase to a Canonical Flavoprotein through Modification of the π-Helix.
    Musila JM; Ellis HR
    Biochemistry; 2016 Nov; 55(46):6389-6394. PubMed ID: 27806563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): half-sites reactivity.
    Nijvipakul S; Ballou DP; Chaiyen P
    Biochemistry; 2010 Nov; 49(43):9241-8. PubMed ID: 20836540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor.
    Valton J; Filisetti L; Fontecave M; Nivière V
    J Biol Chem; 2004 Oct; 279(43):44362-9. PubMed ID: 15297451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1.
    Matsubara T; Ohshiro T; Nishina Y; Izumi Y
    Appl Environ Microbiol; 2001 Mar; 67(3):1179-84. PubMed ID: 11229908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.