These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 27392683)

  • 1. Relationship between Suspension Properties and Fibril Structure of Disintegrated Bacterial Cellulose.
    Ougiya H; Watanabe K; Matsumura T; Yoshinaga F
    Biosci Biotechnol Biochem; 1998; 62(9):1714-9. PubMed ID: 27392683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural modification of bacterial cellulose fibrils under ultrasonic irradiation.
    Paximada P; Dimitrakopoulou EA; Tsouko E; Koutinas AA; Fasseas C; Mandala IG
    Carbohydr Polym; 2016 Oct; 150():5-12. PubMed ID: 27312607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whey protein nanofibrils: the environment-morphology-functionality relationship in lyophilization, rehydration, and seeding.
    Loveday SM; Su J; Rao MA; Anema SG; Singh H
    J Agric Food Chem; 2012 May; 60(20):5229-36. PubMed ID: 22519579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-grain model for natural cellulose fibrils in explicit water.
    Srinivas G; Cheng X; Smith JC
    J Phys Chem B; 2014 Mar; 118(11):3026-34. PubMed ID: 24564237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the Physical Properties and Surface Area of Cellulose Derived from Adsorbates of Various Molecular Sizes.
    Ougiya H; Hioki N; Watanabe K; Morinaga Y; Yoshinaga F; Samejima M
    Biosci Biotechnol Biochem; 1998; 62(10):1880-4. PubMed ID: 27385448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological behavior of cellulose nanowhisker suspension under magnetic field.
    Kim DH; Song YS
    Carbohydr Polym; 2015 Aug; 126():240-7. PubMed ID: 25933545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions.
    Saito T; Hirota M; Tamura N; Kimura S; Fukuzumi H; Heux L; Isogai A
    Biomacromolecules; 2009 Jul; 10(7):1992-6. PubMed ID: 19445519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.
    Saito T; Nishiyama Y; Putaux JL; Vignon M; Isogai A
    Biomacromolecules; 2006 Jun; 7(6):1687-91. PubMed ID: 16768384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing cellulose microfibrillar structure changes due to cellulase action.
    Jeoh T; Santa-Maria MC; O'Dell PJ
    Carbohydr Polym; 2013 Sep; 97(2):581-6. PubMed ID: 23911488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The surface structure of well-ordered native cellulose fibrils in contact with water.
    Malm E; Bulone V; Wickholm K; Larsson PT; Iversen T
    Carbohydr Res; 2010 Jan; 345(1):97-100. PubMed ID: 19926077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of cellulose fibrils on solid substrates for cellulase-binding studies through quantitative fluorescence microscopy.
    Moran-Mirabal JM; Santhanam N; Corgie SC; Craighead HG; Walker LP
    Biotechnol Bioeng; 2008 Dec; 101(6):1129-41. PubMed ID: 18563846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: history of the amyloid fibril.
    Sipe JD; Cohen AS
    J Struct Biol; 2000 Jun; 130(2-3):88-98. PubMed ID: 10940217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and properties of bacterial cellulose produced using a trickling bed reactor.
    Lu H; Jiang X
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3844-61. PubMed ID: 24682876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal behavior in the mesoscale properties of amyloid fibrils.
    Assenza S; Adamcik J; Mezzenga R; De Los Rios P
    Phys Rev Lett; 2014 Dec; 113(26):268103. PubMed ID: 25615390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.