These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 27392693)

  • 1. Identification and Characterization of Acinetobacter sp. CNU961 Able to Grow with Phenol at High Concentrations.
    Jeong KC; Jeong EY; Hwang TE; Choi SH
    Biosci Biotechnol Biochem; 1998; 62(9):1830-3. PubMed ID: 27392693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and partial characterization of extracellular NADPH-dependent phenol hydroxylase oxidizing phenol to catechol in Comamonas testosteroni.
    Turek M; Vilimkova L; Kremlackova V; Paca J; Halecky M; Paca J; Stiborova M
    Neuro Endocrinol Lett; 2011; 32 Suppl 1():137-45. PubMed ID: 22167219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a phenol-degrading bacterium isolated from an industrial effluent and its potential application for bioremediation.
    Paisio CE; Talano MA; González PS; Pajuelo-Domínguez E; Agostini E
    Environ Technol; 2013; 34(1-4):485-93. PubMed ID: 23530363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of cytoplasmic NADPH-dependent phenol hydroxylase and catechol-1,2-dioxygenase from Candida tropicalis yeast.
    Vilímková L; Páca J; Kremláčková V; Páca J; Stiborová M
    Interdiscip Toxicol; 2008 Dec; 1(3-4):225-30. PubMed ID: 21218120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of four novel Gram-positive bacteria associated with the rhizosphere of two endemorelict plants capable of degrading a broad range of aromatic substrates.
    Djokic L; Narancic T; Nikodinovic-Runic J; Savic M; Vasiljevic B
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1227-38. PubMed ID: 21706169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration.
    Hupert-Kocurek K; Guzik U; Wojcieszyńska D
    Acta Biochim Pol; 2012; 59(3):345-51. PubMed ID: 22826823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acinetobacter radioresistens metabolizing aromatic compounds. 2. Biochemical and microbiological characterization of the strain.
    Pessione E; Giunta C
    Microbios; 1997; 89(359):105-17. PubMed ID: 9237384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenol degradation by yeasts isolated from industrial effluents.
    Santos VL; Linardi VR
    J Gen Appl Microbiol; 2001 Aug; 47(4):213-221. PubMed ID: 12483621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of phenol by Acinetobacter strain isolated from aerobic granules.
    Adav SS; Chen MY; Lee DJ; Ren NQ
    Chemosphere; 2007 Apr; 67(8):1566-72. PubMed ID: 17240418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolism of 4-alkylphenols by Acinetobacter sp. OP5: genetic organization of the oph gene cluster and characterization of alkylcatechol 2, 3-dioxygenase.
    Tuan NN; Lin YW; Huang SL
    Bioresour Technol; 2013 Mar; 131():420-8. PubMed ID: 23376198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents.
    Santos VL; Heilbuth NM; Braga DT; Monteiro AS; Linardi VR
    J Basic Microbiol; 2003; 43(3):238-48. PubMed ID: 12761775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y.
    Jiang L; Ruan Q; Li R; Li T
    J Basic Microbiol; 2013 Mar; 53(3):224-30. PubMed ID: 22914974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylation of phenol to catechol by Candida tropicalis: involvement of cytochrome P450.
    Stiborová M; Suchá V; Miksanová M; Páca J; Páca J
    Gen Physiol Biophys; 2003 Jun; 22(2):167-79. PubMed ID: 14661729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress responses of Acinetobacter strain Y during phenol degradation.
    Lin J
    Arch Microbiol; 2017 Mar; 199(2):365-375. PubMed ID: 27771745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Analysis and Stability Evaluation of the Phenol-Degrading Bacterium
    Gu Q; Chen M; Zhang J; Guo W; Wu H; Sun M; Wei L; Wang J; Wei X; Zhang Y; Ye Q; Xue L; Pang R; Ding Y; Wu Q
    Front Microbiol; 2021; 12():687511. PubMed ID: 34326823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600.
    Shingler V; Franklin FC; Tsuda M; Holroyd D; Bagdasarian M
    J Gen Microbiol; 1989 May; 135(5):1083-92. PubMed ID: 2559941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of different phenol hydroxylase-possessing phenol-degrading pseudomonads by kinetic parameters.
    Viggor S; Heinaru E; Künnapas A; Heinaru A
    Biodegradation; 2008 Sep; 19(5):759-69. PubMed ID: 18283541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation and detoxication of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03.
    Liu YJ; Nikolausz M; Wang XC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):130-6. PubMed ID: 19123092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenol degradation by an enterobacterium: a Klebsiella strain carries a TOL-like plasmid and a gene encoding a novel phenol hydroxylase.
    Heesche-Wagner K; Schwarz T; Kaufmann M
    Can J Microbiol; 1999 Feb; 45(2):162-71. PubMed ID: 10380649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1.
    Santos PM; Sá-Correia I
    J Biotechnol; 2007 Sep; 131(4):371-8. PubMed ID: 17826858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.