BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 27392695)

  • 1. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Expression Vectors Significantly Enhanced the Production of 2-Keto-D-gluconic Acid by Gluconobacter oxidans.
    Shi YY; Li KF; Lin JP; Yang SL; Wei DZ
    J Agric Food Chem; 2015 Jun; 63(22):5492-8. PubMed ID: 26009934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
    Shi L; Li K; Zhang H; Liu X; Lin J; Wei D
    J Biotechnol; 2014 Apr; 175():69-74. PubMed ID: 24530540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans.
    Merfort M; Herrmann U; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH; Wu J; Liu X; Lin JP; Wei DZ; Chen H
    Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system.
    Ji A; Gao P
    Appl Biochem Biotechnol; 2001 Jun; 94(3):213-23. PubMed ID: 11563824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption.
    Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K
    Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate.
    Mao X; Zhang B; Zhao C; Lin J; Wei D
    Microb Cell Fact; 2022 Mar; 21(1):35. PubMed ID: 35264166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.
    Li S; Zhang J; Xu H; Feng X
    J Agric Food Chem; 2016 Feb; 64(5):1144-50. PubMed ID: 26727541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain.
    Saito Y; Ishii Y; Hayashi H; Imao Y; Akashi T; Yoshikawa K; Noguchi Y; Soeda S; Yoshida M; Niwa M; Hosoda J; Shimomura K
    Appl Environ Microbiol; 1997 Feb; 63(2):454-60. PubMed ID: 9023923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.
    Habe H; Fukuoka T; Morita T; Kitamoto D; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(7):1391-5. PubMed ID: 20622460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of xylitol dehydrogenase and improved production of xylitol by increasing XDH activity and NADH supply in Gluconobacter oxydans.
    Zhang J; Li S; Xu H; Zhou P; Zhang L; Ouyang P
    J Agric Food Chem; 2013 Mar; 61(11):2861-7. PubMed ID: 23432201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].
    Tan Z; Wang H; Wei Y; Li Y; Zhong C; Jia S
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):76-82. PubMed ID: 24818481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol.
    Gao L; Hu Y; Liu J; Du G; Zhou J; Chen J
    Metab Eng; 2014 Jul; 24():30-7. PubMed ID: 24792618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase.
    Saichana I; Moonmangmee D; Adachi O; Matsushita K; Toyama H
    Appl Environ Microbiol; 2009 Jul; 75(13):4240-7. PubMed ID: 19411430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.