These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27393216)

  • 21. Product differentiation during continuous-flow thermal gradient PCR.
    Crews N; Wittwer C; Palais R; Gale B
    Lab Chip; 2008 Jun; 8(6):919-24. PubMed ID: 18497912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A low-cost, disposable card for rapid polymerase chain reaction.
    Jia G; Siegrist J; Deng C; Zoval JV; Stewart G; Peytavi R; Huletsky A; Bergeron MG; Madou MJ
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):52-60. PubMed ID: 17499979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator.
    Fuchiwaki Y; Nagai H
    Sensors (Basel); 2014 Oct; 14(11):20235-44. PubMed ID: 25350508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circumventing air bubbles in microfluidic systems and quantitative continuous-flow PCR applications.
    Nakayama T; Kurosawa Y; Furui S; Kerman K; Kobayashi M; Rao SR; Yonezawa Y; Nakano K; Hino A; Yamamura S; Takamura Y; Tamiya E
    Anal Bioanal Chem; 2006 Nov; 386(5):1327-33. PubMed ID: 16896609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Xu F; Soper SA
    Analyst; 2007 Sep; 132(9):913-21. PubMed ID: 17710267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid DNA amplification in glass microdevices.
    Easley CJ; Legendre LA; Landers JP; Ferrance JP
    Methods Mol Biol; 2006; 339():217-32. PubMed ID: 16790876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A versatile oscillating-flow microfluidic PCR system utilizing a thermal gradient for nucleic acid analysis.
    Kopparthy VL; Crews ND
    Biotechnol Bioeng; 2020 May; 117(5):1525-1532. PubMed ID: 31956988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plug-and-play, infrared, laser-mediated PCR in a microfluidic chip.
    Pak N; Saunders DC; Phaneuf CR; Forest CR
    Biomed Microdevices; 2012 Apr; 14(2):427-33. PubMed ID: 22218821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid detection of genetically modified organisms on a continuous-flow polymerase chain reaction microfluidics.
    Li Y; Xing D; Zhang C
    Anal Biochem; 2009 Feb; 385(1):42-9. PubMed ID: 19010299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption.
    Lee DS; Park SH; Yang H; Chung KH; Yoon TH; Kim SJ; Kim K; Kim YT
    Lab Chip; 2004 Aug; 4(4):401-7. PubMed ID: 15269812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disposable real-time microPCR device: lab-on-a-chip at a low cost.
    Neuzil P; Pipper J; Hsieh TM
    Mol Biosyst; 2006 Jun; 2(6-7):292-8. PubMed ID: 16880947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional on-chip continuous-flow polymerase chain reaction employing a single heater.
    Wu W; Lee NY
    Anal Bioanal Chem; 2011 Jun; 400(7):2053-60. PubMed ID: 21479543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast nucleic acid amplification for integration in point-of-care applications.
    Brunklaus S; Hansen-Hagge TE; Erwes J; Höth J; Jung M; Latta D; Strobach X; Winkler C; Ritzi-Lehnert M; Drese KS
    Electrophoresis; 2012 Nov; 33(21):3222-8. PubMed ID: 23065712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simply and reliably integrating micro heaters/sensors in a monolithic PCR-CE microfluidic genetic analysis system.
    Zhong R; Pan X; Jiang L; Dai Z; Qin J; Lin B
    Electrophoresis; 2009 Apr; 30(8):1297-305. PubMed ID: 19319907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis.
    Rodriguez I; Lesaicherre M; Tie Y; Zou Q; Yu C; Singh J; Meng LT; Uppili S; Li SF; Gopalakrishnakone P; Selvanayagam ZE
    Electrophoresis; 2003 Jan; 24(1-2):172-8. PubMed ID: 12652588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser.
    Yao L; Liu B; Chen T; Liu S; Zuo T
    Biomed Microdevices; 2005 Sep; 7(3):253-7. PubMed ID: 16133814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection.
    Lee TM; Carles MC; Hsing IM
    Lab Chip; 2003 May; 3(2):100-5. PubMed ID: 15100790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plastic microfluidic chip for continuous-flow polymerase chain reaction: simulations and experiments.
    Cao Q; Kim MC; Klapperich C
    Biotechnol J; 2011 Feb; 6(2):177-84. PubMed ID: 21298803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.