These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27393413)

  • 1. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.
    Arbabi V; Pouran B; Weinans H; Zadpoor AA
    J Biomech; 2016 Sep; 49(13):2799-2805. PubMed ID: 27393413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.
    Arbabi V; Pouran B; Campoli G; Weinans H; Zadpoor AA
    J Biomech; 2016 Mar; 49(5):631-637. PubMed ID: 26944689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.
    Arbabi V; Pouran B; Weinans H; Zadpoor AA
    J Biomech; 2016 Jun; 49(9):1510-1517. PubMed ID: 27033729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutral solute transport across osteochondral interface: A finite element approach.
    Arbabi V; Pouran B; Weinans H; Zadpoor AA
    J Biomech; 2016 Dec; 49(16):3833-3839. PubMed ID: 27793406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of multiphysics models to efficient design of experiments of solute transport across articular cartilage.
    Pouran B; Arbabi V; Weinans H; Zadpoor AA
    Comput Biol Med; 2016 Nov; 78():91-96. PubMed ID: 27673491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of neutral solute across articular cartilage: the role of zonal diffusivities.
    Arbabi V; Pouran B; Weinans H; Zadpoor AA
    J Biomech Eng; 2015 Jul; 137(7):. PubMed ID: 25790039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surrogate modeling of deformable joint contact using artificial neural networks.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2015 Sep; 37(9):885-91. PubMed ID: 26220591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T.
    Bertleff M; Domsch S; Weingärtner S; Zapp J; O'Brien K; Barth M; Schad LR
    NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 28960549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the relationship between proteomic, compositional, and histologic biomarkers and cartilage biomechanics using artificial neural networks.
    Rexwinkle JT; Werner NC; Stoker AM; Salim M; Pfeiffer FM
    J Biomech; 2018 Oct; 80():136-143. PubMed ID: 30269929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Experimental and Finite Element Protocol to Investigate the Transport of Neutral and Charged Solutes across Articular Cartilage.
    Arbabi V; Pouran B; Zadpoor AA; Weinans H
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28518064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepFRAP: Fast fluorescence recovery after photobleaching data analysis using deep neural networks.
    Wåhlstrand Skärström V; Krona A; Lorén N; Röding M
    J Microsc; 2021 May; 282(2):146-161. PubMed ID: 33247838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach for semiconductor parameter extraction using cathodoluminescence and artificial neural networks.
    Soualmia S; Bouldjedri A; Benhaya A
    Scanning; 2011; 33(4):252-65. PubMed ID: 21638288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage.
    Pouran B; Arbabi V; Zadpoor AA; Weinans H
    Med Eng Phys; 2016 Dec; 38(12):1399-1407. PubMed ID: 27720635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents.
    Kulmala KA; Korhonen RK; Julkunen P; Jurvelin JS; Quinn TM; Kröger H; Töyräs J
    Med Eng Phys; 2010 Oct; 32(8):878-82. PubMed ID: 20594900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.
    Oparaji U; Sheu RJ; Bankhead M; Austin J; Patelli E
    Neural Netw; 2017 Dec; 96():80-90. PubMed ID: 28987979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse Estimation of Moisture Diffusion Model for Concrete Using Artificial Neural Network.
    Lee JM; Lee CJ
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.