BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 27393468)

  • 1. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.
    Döhlemann J; Brennecke M; Becker A
    J Biotechnol; 2016 Sep; 233():160-70. PubMed ID: 27393468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Family of Single Copy repABC-Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium Sinorhizobium meliloti.
    Döhlemann J; Wagner M; Happel C; Carrillo M; Sobetzko P; Erb TJ; Thanbichler M; Becker A
    ACS Synth Biol; 2017 Jun; 6(6):968-984. PubMed ID: 28264559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombineering-Mediated Sinorhizobium meliloti Rm1021 Gene Deletion.
    Yang J; Zhang Q; Zhang G; Shang G
    Curr Microbiol; 2023 Jan; 80(2):76. PubMed ID: 36650293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus.
    Togawa Y; Nunoshiba T; Hiratsu K
    Mol Genet Genomics; 2018 Feb; 293(1):277-291. PubMed ID: 28840320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Editing in Model Strain
    Yang YJ; Singh RP; Lan X; Zhang CS; Li YZ; Li YQ; Sheng DH
    Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30404219
    [No Abstract]   [Full Text] [Related]  

  • 6. New recombination methods for Sinorhizobium meliloti genetics.
    House BL; Mortimer MW; Kahn ML
    Appl Environ Microbiol; 2004 May; 70(5):2806-15. PubMed ID: 15128536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair.
    Penttinen P; Greco D; Muntyan V; Terefework Z; De Lajudie P; Roumiantseva M; Becker A; Auvinen P; Lindström K
    J Basic Microbiol; 2016 Jun; 56(6):680-5. PubMed ID: 26879331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designer Sinorhizobium meliloti strains and multi-functional vectors enable direct inter-kingdom DNA transfer.
    Brumwell SL; MacLeod MR; Huang T; Cochrane RR; Meaney RS; Zamani M; Matysiakiewicz O; Dan KN; Janakirama P; Edgell DR; Charles TC; Finan TM; Karas BJ
    PLoS One; 2019; 14(6):e0206781. PubMed ID: 31206509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a functional genomics platform for Sinorhizobium meliloti: construction of an ORFeome.
    Schroeder BK; House BL; Mortimer MW; Yurgel SN; Maloney SC; Ward KL; Kahn ML
    Appl Environ Microbiol; 2005 Oct; 71(10):5858-64. PubMed ID: 16204497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome.
    Schneiker-Bekel S; Wibberg D; Bekel T; Blom J; Linke B; Neuweger H; Stiens M; Vorhölter FJ; Weidner S; Goesmann A; Pühler A; Schlüter A
    J Biotechnol; 2011 Aug; 155(1):20-33. PubMed ID: 21396969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of lambda Red-mediated recombineering and Cre/lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli.
    Tuntufye HN; Goddeeris BM
    FEMS Microbiol Lett; 2011 Dec; 325(2):140-7. PubMed ID: 22029745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited use of the Cre/loxP recombination system in efficient production of loxP-containing minicircles in vivo.
    Sektas M; Specht M
    Plasmid; 2005 Mar; 53(2):148-63. PubMed ID: 15737402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimization of the Escherichia coli genome using the Tn5-targeted Cre/loxP excision system.
    Yu BJ; Kim C
    Methods Mol Biol; 2008; 416():261-77. PubMed ID: 18392973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmids that insert into the rhamnose utilization locus, rha: a versatile tool for genetic studies in Sinorhizobium meliloti.
    Arango Pinedo C; Gage DJ
    J Mol Microbiol Biotechnol; 2009; 17(4):201-10. PubMed ID: 19797916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized bacterial genome editing using mobile group II introns and Cre-lox.
    Enyeart PJ; Chirieleison SM; Dao MN; Perutka J; Quandt EM; Yao J; Whitt JT; Keatinge-Clay AT; Lambowitz AM; Ellington AD
    Mol Syst Biol; 2013; 9():685. PubMed ID: 24002656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.
    Kawano F; Okazaki R; Yazawa M; Sato M
    Nat Chem Biol; 2016 Dec; 12(12):1059-1064. PubMed ID: 27723747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination.
    Missirlis PI; Smailus DE; Holt RA
    BMC Genomics; 2006 Apr; 7():73. PubMed ID: 16595017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Construction of Large Genomic Deletion in Agrobacterium tumefaciens by Combination of Cre/loxP System and Triple Recombineering.
    Liu Z; Xie Y; Zhang X; Hu X; Li Y; Ding X; Xia L; Hu S
    Curr Microbiol; 2016 Apr; 72(4):465-72. PubMed ID: 26742770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the Cre/lox system for targeted integration into the human genome: loxFAS-loxP pairing and delayed introduction of Cre DNA improve gene swapping efficiency.
    Lanza AM; Dyess TJ; Alper HS
    Biotechnol J; 2012 Jul; 7(7):898-908. PubMed ID: 22539467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium Sinorhizobium meliloti.
    Checcucci A; diCenzo GC; Ghini V; Bazzicalupo M; Becker A; Decorosi F; Döhlemann J; Fagorzi C; Finan TM; Fondi M; Luchinat C; Turano P; Vignolini T; Viti C; Mengoni A
    ACS Synth Biol; 2018 Oct; 7(10):2365-2378. PubMed ID: 30223644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.