BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27393815)

  • 1. Formation of size-controlled, denaturation-resistant lipid nanodiscs by an amphiphilic self-polymerizing peptide.
    Kondo H; Ikeda K; Nakano M
    Colloids Surf B Biointerfaces; 2016 Oct; 146():423-30. PubMed ID: 27393815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.
    Morgan CR; Hebling CM; Rand KD; Stafford DW; Jorgenson JW; Engen JR
    Mol Cell Proteomics; 2011 Sep; 10(9):M111.010876. PubMed ID: 21715319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of stable nanodiscs by bihelical apolipoprotein A-I mimetic peptide.
    Kariyazono H; Nadai R; Miyajima R; Takechi-Haraya Y; Baba T; Shigenaga A; Okuhira K; Otaka A; Saito H
    J Pept Sci; 2016 Feb; 22(2):116-22. PubMed ID: 26780967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins.
    Nath A; Atkins WM; Sligar SG
    Biochemistry; 2007 Feb; 46(8):2059-69. PubMed ID: 17263563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static and dynamic characterization of nanodiscs with apolipoprotein A-I and its model peptide.
    Miyazaki M; Tajima Y; Handa T; Nakano M
    J Phys Chem B; 2010 Sep; 114(38):12376-82. PubMed ID: 20812712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nanodisc: a novel tool for membrane protein studies.
    Borch J; Hamann T
    Biol Chem; 2009 Aug; 390(8):805-14. PubMed ID: 19453280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of apolipoprotein A-I peptide phospholipid interaction and its effect on HDL nanodisc assembly.
    Patel H; Ding B; Ernst K; Shen L; Yuan W; Tang J; Drake LR; Kang J; Li Y; Chen Z; Schwendeman A
    Int J Nanomedicine; 2019; 14():3069-3086. PubMed ID: 31118623
    [No Abstract]   [Full Text] [Related]  

  • 8. Molecular dynamics simulations of lipid nanodiscs.
    Pourmousa M; Pastor RW
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2094-2107. PubMed ID: 29729280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic diffusional sizing probes lipid nanodiscs formation.
    Azouz M; Gonin M; Fiedler S; Faherty J; Decossas M; Cullin C; Villette S; Lafleur M; D Alves I; Lecomte S; Ciaccafava A
    Biochim Biophys Acta Biomembr; 2020 Jun; 1862(6):183215. PubMed ID: 32061645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature- and composition-dependent conformational transitions of amphipathic peptide-phospholipid nanodiscs.
    Anada C; Ikeda K; Egawa A; Fujiwara T; Nakao H; Nakano M
    J Colloid Interface Sci; 2021 Apr; 588():522-530. PubMed ID: 33429348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR.
    Hagn F; Nasr ML; Wagner G
    Nat Protoc; 2018 Jan; 13(1):79-98. PubMed ID: 29215632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs.
    Ravula T; Ramadugu SK; Di Mauro G; Ramamoorthy A
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11466-11470. PubMed ID: 28714233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid bilayer nanodiscs: a powerful tool to study the structural organization and biochemical reactivity of proteins in membrane-like environments.
    Hernández-Rocamora VM; García-Montañés C; Rivas G
    Curr Top Med Chem; 2014; 14(23):2637-46. PubMed ID: 25515754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR.
    Wang X; Mu Z; Li Y; Bi Y; Wang Y
    Protein J; 2015 Jun; 34(3):205-11. PubMed ID: 25980794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity.
    Wadsäter M; Barker R; Mortensen K; Feidenhans'l R; Cárdenas M
    Langmuir; 2013 Mar; 29(9):2871-80. PubMed ID: 23373466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-Mediated Stack Formation of Nanodiscs.
    Subramanian M; Kielar C; Tsushima S; Fahmy K; Oertel J
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33809519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins.
    Shih AY; Denisov IG; Phillips JC; Sligar SG; Schulten K
    Biophys J; 2005 Jan; 88(1):548-56. PubMed ID: 15533924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size.
    Denisov IG; Grinkova YV; Lazarides AA; Sligar SG
    J Am Chem Soc; 2004 Mar; 126(11):3477-87. PubMed ID: 15025475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and dynamic properties of phospholipid bilayer nanodiscs.
    Nakano M; Fukuda M; Kudo T; Miyazaki M; Wada Y; Matsuzaki N; Endo H; Handa T
    J Am Chem Soc; 2009 Jun; 131(23):8308-12. PubMed ID: 19456103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization of Phospholipid by Surfactin Leading to Lipid Nanodisc and Fibrous Architecture Formation.
    Imura T; Yanagisawa S; Ikeda Y; Moriyama R; Sakai K; Sakai H; Taira T
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.