These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 27393834)
1. Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process. Baêta BE; Lima DR; Filho JG; Adarme OF; Gurgel LV; Aquino SF Bioresour Technol; 2016 Oct; 218():436-46. PubMed ID: 27393834 [TBL] [Abstract][Full Text] [Related]
2. Optimization of sugarcane bagasse autohydrolysis for methane production from hemicellulose hydrolyzates in a biorefinery concept. Baêta BE; Lima DR; Adarme OF; Gurgel LV; Aquino SF Bioresour Technol; 2016 Jan; 200():137-46. PubMed ID: 26476615 [TBL] [Abstract][Full Text] [Related]
3. Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor. Ribeiro FR; Passos F; Gurgel LVA; Baêta BEL; de Aquino SF Sci Total Environ; 2017 Apr; 584-585():1108-1113. PubMed ID: 28162762 [TBL] [Abstract][Full Text] [Related]
4. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process. Kumari S; Das D Bioresour Technol; 2015 Oct; 194():354-63. PubMed ID: 26210150 [TBL] [Abstract][Full Text] [Related]
5. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment. Jafari O; Zilouei H Bioresour Technol; 2016 Aug; 214():670-678. PubMed ID: 27208737 [TBL] [Abstract][Full Text] [Related]
6. Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Batalha LA; Han Q; Jameel H; Chang HM; Colodette JL; Borges Gomes FJ Bioresour Technol; 2015 Mar; 180():97-105. PubMed ID: 25590426 [TBL] [Abstract][Full Text] [Related]
7. Effect of hydrothermal and Ca(OH) Mustafa AM; Li H; Radwan AA; Sheng K; Chen X Bioresour Technol; 2018 Jul; 259():54-60. PubMed ID: 29536874 [TBL] [Abstract][Full Text] [Related]
8. Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes. Adarme OFH; Baêta BEL; Filho JBG; Gurgel LVA; Aquino SF Bioresour Technol; 2019 Sep; 287():121443. PubMed ID: 31103937 [TBL] [Abstract][Full Text] [Related]
9. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Rabelo SC; Carrere H; Maciel Filho R; Costa AC Bioresour Technol; 2011 Sep; 102(17):7887-95. PubMed ID: 21689929 [TBL] [Abstract][Full Text] [Related]
10. Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Velmurugan R; Muthukumar K Bioresour Technol; 2011 Jul; 102(14):7119-23. PubMed ID: 21570831 [TBL] [Abstract][Full Text] [Related]
11. [Performance of Treating Straw and Animal Manure Mixture by an Integrated Process of Thermo-alkali-bi-enzyme Hydrolysis-anaerobic Digestion and Conditions of High Methane Yield]. Bian AQ; Yuan Y; Zhang LL; Fu Q; Chen TM; He L; Dind C; Wang AJ Huan Jing Ke Xue; 2019 Feb; 40(2):1003-1010. PubMed ID: 30628370 [TBL] [Abstract][Full Text] [Related]
12. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bolado-Rodríguez S; Toquero C; Martín-Juárez J; Travaini R; García-Encina PA Bioresour Technol; 2016 Feb; 201():182-90. PubMed ID: 26642223 [TBL] [Abstract][Full Text] [Related]
13. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield. Arreola-Vargas J; Ojeda-Castillo V; Snell-Castro R; Corona-González RI; Alatriste-Mondragón F; Méndez-Acosta HO Bioresour Technol; 2015 Apr; 181():191-9. PubMed ID: 25647030 [TBL] [Abstract][Full Text] [Related]
14. Comparing impacts of physicochemical properties and hydrolytic inhibitors on enzymatic hydrolysis of sugarcane bagasse. Li M; Guo C; Luo B; Chen C; Wang S; Min D Bioprocess Biosyst Eng; 2020 Jan; 43(1):111-122. PubMed ID: 31538235 [TBL] [Abstract][Full Text] [Related]
15. Fractionation of sugarcane bagasse using hydrothermal and advanced oxidative pretreatments for bioethanol and biogas production in lignocellulose biorefineries. Bittencourt GA; Barreto EDS; Brandão RL; Baêta BEL; Gurgel LVA Bioresour Technol; 2019 Nov; 292():121963. PubMed ID: 31442832 [TBL] [Abstract][Full Text] [Related]
16. Three-stage repeated-batch immobilized cell fermentation to produce butanol from non-detoxified sugarcane bagasse hemicellulose hydrolysates. Chacón SJ; Matias G; Ezeji TC; Maciel Filho R; Mariano AP Bioresour Technol; 2021 Feb; 321():124504. PubMed ID: 33307480 [TBL] [Abstract][Full Text] [Related]
17. Compositional changes in sugarcane bagasse on low temperature, long-term diluted ammonia treatment. Kim M; Aita G; Day DF Appl Biochem Biotechnol; 2010 May; 161(1-8):34-40. PubMed ID: 19916000 [TBL] [Abstract][Full Text] [Related]
18. Effect of hydrothermal pretreatment on Miscanthus anaerobic digestion. Zhou X; Li Q; Zhang Y; Gu Y Bioresour Technol; 2017 Jan; 224():721-726. PubMed ID: 27866803 [TBL] [Abstract][Full Text] [Related]
19. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi. da Cunha Abreu Xavier M; Teixeira Franco T Biotechnol Lett; 2021 May; 43(5):967-979. PubMed ID: 33517513 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production. Ramadoss G; Muthukumar K Ultrason Sonochem; 2016 Jan; 28():207-217. PubMed ID: 26384901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]