These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27393970)

  • 1. Comparison of chromium III and VI toxicities in water using sulfur-oxidizing bacterial bioassays.
    Qambrani NA; Hwang JH; Oh SE
    Chemosphere; 2016 Oct; 160():342-8. PubMed ID: 27393970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor.
    Eom H; Hwang JH; Hassan SHA; Joo JH; Hur JH; Chon K; Jeon BH; Song YC; Chae KJ; Oh SE
    J Microbiol Methods; 2019 Jun; 161():35-42. PubMed ID: 30978364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of Acidithiobacillus caldus from a sulfur-oxidizing bacterial biosensor and its role in detection of toxic chemicals.
    Hassan SH; Van Ginkel SW; Kim SM; Yoon SH; Joo JH; Shin BS; Jeon BH; Bae W; Oh SE
    J Microbiol Methods; 2010 Aug; 82(2):151-5. PubMed ID: 20580751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-continuous detection of toxic hexavalent chromium using a sulfur-oxidizing bacteria biosensor.
    Gurung A; Oh SE; Kim KD; Shin BS
    J Environ Manage; 2012 Sep; 106():110-2. PubMed ID: 22647672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time monitoring of water quality of stream water using sulfur-oxidizing bacteria as bio-indicator.
    Hassan SHA; Gurung A; Kang WC; Shin BS; Rahimnejad M; Jeon BH; Kim JR; Oh SE
    Chemosphere; 2019 May; 223():58-63. PubMed ID: 30769290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of nonmutagenic Cr(III)-DNA interactions.
    Blankert SA; Coryell VH; Picard BT; Wolf KK; Lomas RE; Stearns DM
    Chem Res Toxicol; 2003 Jul; 16(7):847-54. PubMed ID: 12870887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and Mechanisms of Cr(VI) Formation via the Oxidation of Cr(III) Solid Phases by Chlorine in Drinking Water.
    Chebeir M; Liu H
    Environ Sci Technol; 2016 Jan; 50(2):701-10. PubMed ID: 26647114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitating role of biogenetic schwertmannite in the reduction of Cr(VI) by sulfide and its mechanism.
    Zhou P; Li Y; Shen Y; Lan Y; Zhou L
    J Hazard Mater; 2012 Oct; 237-238():194-8. PubMed ID: 22954599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor.
    Hassan SH; Van Ginkel SW; Oh SE
    Chemosphere; 2013 Jan; 90(3):965-70. PubMed ID: 22840537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction.
    Gan M; Li J; Sun S; Ding J; Zhu J; Liu X; Qiu G
    J Environ Manage; 2018 Aug; 219():84-94. PubMed ID: 29730593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexavalent chromium remediation based on the synergistic effect between chemoautotrophic bacteria and sulfide minerals.
    Gan M; Gu C; Ding J; Zhu J; Liu X; Qiu G
    Ecotoxicol Environ Saf; 2019 May; 173():118-130. PubMed ID: 30771655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the toxicity of chromium in sediments.
    Berry WJ; Boothman WS; Serbst JR; Edwards PA
    Environ Toxicol Chem; 2004 Dec; 23(12):2981-92. PubMed ID: 15648774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexavalent chromium reduction kinetics in rodent stomach contents.
    Proctor DM; Suh M; Aylward LL; Kirman CR; Harris MA; Thompson CM; Gürleyük H; Gerads R; Haws LC; Hays SM
    Chemosphere; 2012 Oct; 89(5):487-93. PubMed ID: 22682893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium speciation in groundwater of a tannery polluted area of Chennai City, India.
    Kumar AR; Riyazuddin P
    Environ Monit Assess; 2010 Jan; 160(1-4):579-91. PubMed ID: 19184493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of EDTA in chromium (III-VI) toxicity on marine intertidal crab (Petrolisthes laevigatus).
    Urrutia C; Rudolph A; Lermanda MP; Ahumada R
    Bull Environ Contam Toxicol; 2008 Jun; 80(6):526-8. PubMed ID: 18369522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an online sulfur-oxidizing bacteria biosensor for the monitoring of water toxicity.
    Gurung A; Kang WC; Shin BS; Cho JS; Oh SE
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2585-93. PubMed ID: 25253265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism.
    Ye Y; Jiang Z; Xu Z; Zhang X; Wang D; Lv L; Pan B
    Water Res; 2017 Dec; 126():172-178. PubMed ID: 28946060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carcinogenic Cr(VI) and the nutritional supplement Cr(III) induce DNA deletions in yeast and mice.
    Kirpnick-Sobol Z; Reliene R; Schiestl RH
    Cancer Res; 2006 Apr; 66(7):3480-4. PubMed ID: 16585171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of chromium(III) and chromium(VI) to the earthworm Eisenia fetida.
    Sivakumar S; Subbhuraam CV
    Ecotoxicol Environ Saf; 2005 Sep; 62(1):93-8. PubMed ID: 15978294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor.
    Lugo-Lugo V; Barrera-Díaz C; Bilyeu B; Balderas-Hernández P; Ureña-Nuñez F; Sánchez-Mendieta V
    J Hazard Mater; 2010 Apr; 176(1-3):418-25. PubMed ID: 20031318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.