BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27395002)

  • 1. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves.
    Intani K; Latif S; Kabir AK; Müller J
    Bioresour Technol; 2016 Oct; 218():541-51. PubMed ID: 27395002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of biochar from maize residues produced in a self-purging pyrolysis reactor.
    Intani K; Latif S; Cao Z; Müller J
    Bioresour Technol; 2018 Oct; 265():224-235. PubMed ID: 29902655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolyzed and unpyrolyzed residues enhance maize yield under varying rates of application and fertilization regimes.
    Wani OA; Akhter F; Kumar SS; Kanth RH; Dar ZA; Babu S; Hussain N; Mahdi SS; Alataway A; Dewidar AZ; Mattar MA
    PeerJ; 2024; 12():e17513. PubMed ID: 38887617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.
    Tinwala F; Mohanty P; Parmar S; Patel A; Pant KK
    Bioresour Technol; 2015; 188():258-64. PubMed ID: 25770670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.
    Shah A; Darr MJ; Dalluge D; Medic D; Webster K; Brown RC
    Bioresour Technol; 2012 Dec; 125():348-52. PubMed ID: 23069609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17928-40. PubMed ID: 27255313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C.
    Lee Y; Park J; Ryu C; Gang KS; Yang W; Park YK; Jung J; Hyun S
    Bioresour Technol; 2013 Nov; 148():196-201. PubMed ID: 24047681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pyrolysis conditions on the characteristics of biochar produced from a tobacco stem.
    Lin Y; Yan W; Sheng K
    Waste Manag Res; 2016 Aug; 34(8):793-801. PubMed ID: 27401160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of biochars obtained from valorization of biowaste and evaluation of its physicochemical properties.
    Narzari R; Bordoloi N; Sarma B; Gogoi L; Gogoi N; Borkotoki B; Kataki R
    Bioresour Technol; 2017 Oct; 242():324-328. PubMed ID: 28501382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Pyrolysis Temperature on Cadmium Removal Capacity and Mechanism by Maize Straw and Platanus Leaves Biochars.
    Wang H; Zhang M; Lv Q
    Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30857159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
    Wang H; Wang X; Cui Y; Xue Z; Ba Y
    Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass.
    Torri C; Fabbri D
    Bioresour Technol; 2014 Nov; 172():335-341. PubMed ID: 25277261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.
    Idris J; Shirai Y; Andou Y; Mohd Ali AA; Othman MR; Ibrahim I; Yamamoto A; Yasuda N; Hassan MA
    Waste Manag Res; 2016 Feb; 34(2):176-80. PubMed ID: 26612557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of wood to biochar: increasing yield while maintaining microporosity.
    Veksha A; McLaughlin H; Layzell DB; Hill JM
    Bioresour Technol; 2014 Feb; 153():173-9. PubMed ID: 24365739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?
    Břendová K; Száková J; Lhotka M; Krulikovská T; Punčochář M; Tlustoš P
    Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene].
    Huang H; Wang YX; Tang JC; Tang JC; Zhu WY
    Huan Jing Ke Xue; 2014 May; 35(5):1884-90. PubMed ID: 25055682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.
    Wang X; Zhou W; Liang G; Song D; Zhang X
    Sci Total Environ; 2015 Dec; 538():137-44. PubMed ID: 26298256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar.
    Zhang X; Zhang P; Yuan X; Li Y; Han L
    Bioresour Technol; 2020 Jan; 296():122318. PubMed ID: 31675650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake.
    Angın D
    Bioresour Technol; 2013 Jan; 128():593-7. PubMed ID: 23211485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.
    Chen D; Zhou J; Zhang Q
    Bioresour Technol; 2014 Oct; 169():313-319. PubMed ID: 25063973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.