BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27395755)

  • 21. Comparison of different methods to include recycling in LCAs of aluminium cans and disposable polystyrene cups.
    van der Harst E; Potting J; Kroeze C
    Waste Manag; 2016 Feb; 48():565-583. PubMed ID: 26440926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges of metal recycling and an international covenant as possible instrument of a globally extended producer responsibility.
    Wilts H; Bringezu S; Bleischwitz R; Lucas R; Wittmer D
    Waste Manag Res; 2011 Sep; 29(9):902-10. PubMed ID: 21771872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling production processes in a vehicle recycling plant.
    Simic V; Dimitrijevic B
    Waste Manag Res; 2012 Sep; 30(9):940-8. PubMed ID: 22829517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of thermal insulation sandwich panels containing end-of-life vehicle (ELV) headlamp and seat waste.
    Wong YC; Mahyuddin N; Aminuddin AMR
    Waste Manag; 2020 Dec; 118():402-415. PubMed ID: 32947219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.
    Puthussery JV; Kumar R; Garg A
    Waste Manag; 2017 Feb; 60():270-276. PubMed ID: 27353393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automotive shredder residue (ASR) characterization for a valuable management.
    Morselli L; Santini A; Passarini F; Vassura I
    Waste Manag; 2010 Nov; 30(11):2228-34. PubMed ID: 20566277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MaTrace: tracing the fate of materials over time and across products in open-loop recycling.
    Nakamura S; Kondo Y; Kagawa S; Matsubae K; Nakajima K; Nagasaka T
    Environ Sci Technol; 2014 Jul; 48(13):7207-14. PubMed ID: 24872019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. E-waste management and resources recovery in France.
    Vadoudi K; Kim J; Laratte B; Lee SJ; Troussier N
    Waste Manag Res; 2015 Oct; 33(10):919-29. PubMed ID: 26283311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scrap automotive electronics: A mini-review of current management practices.
    Cucchiella F; D'Adamo I; Rosa P; Terzi S
    Waste Manag Res; 2016 Jan; 34(1):3-10. PubMed ID: 26467318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental and economic benefits of electric, hybrid and conventional vehicle treatment: A case study of Lithuania.
    Petrauskienė K; Tverskytė R; Dvarionienė J
    Waste Manag; 2022 Mar; 140():55-62. PubMed ID: 35066452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: results and cost assessment.
    Ruffino B; Fiore S; Zanetti MC
    Waste Manag; 2014 Jan; 34(1):148-55. PubMed ID: 24140377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. End-of-Life in the railway sector: Analysis of recyclability and recoverability for different vehicle case studies.
    Delogu M; Del Pero F; Berzi L; Pierini M; Bonaffini D
    Waste Manag; 2017 Feb; 60():439-450. PubMed ID: 27726996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles.
    Restrepo E; Løvik AN; Wäger P; Widmer R; Lonka R; Müller DB
    Environ Sci Technol; 2017 Feb; 51(3):1129-1139. PubMed ID: 28099815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automobile Shredder Residues in Italy: characterization and valorization opportunities.
    Fiore S; Ruffino B; Zanetti MC
    Waste Manag; 2012 Aug; 32(8):1548-59. PubMed ID: 22525092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network modeling for reverse flows of end-of-life vehicles.
    Ene S; Öztürk N
    Waste Manag; 2015 Apr; 38():284-96. PubMed ID: 25659298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is the assimilation to a solid recovered fuel a viable solution for automobile shredder residues' management?
    Ruffino B; Zanetti M
    Environ Res; 2024 Apr; 247():118131. PubMed ID: 38215920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.
    Jordão H; Sousa AJ; Carvalho MT
    Waste Manag; 2016 Feb; 48():366-373. PubMed ID: 26470828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flows of engineered nanomaterials through the recycling process in Switzerland.
    Caballero-Guzman A; Sun T; Nowack B
    Waste Manag; 2015 Feb; 36():33-43. PubMed ID: 25524750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of joint technologies on ELV recyclability.
    Soo VK; Compston P; Doolan M
    Waste Manag; 2017 Oct; 68():421-433. PubMed ID: 28739026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.