BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27395826)

  • 1. Characteristics of thoracic aortic aneurysm rupture in vitro.
    Luo Y; Duprey A; Avril S; Lu J
    Acta Biomater; 2016 Sep; 42():286-295. PubMed ID: 27395826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biaxial rupture properties of ascending thoracic aortic aneurysms.
    Duprey A; Trabelsi O; Vola M; Favre JP; Avril S
    Acta Biomater; 2016 Sep; 42():273-285. PubMed ID: 27345137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local mechanical properties of human ascending thoracic aneurysms.
    Davis FM; Luo Y; Avril S; Duprey A; Lu J
    J Mech Behav Biomed Mater; 2016 Aug; 61():235-249. PubMed ID: 27077532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical properties of human ascending thoracic aortic aneurysms.
    Azadani AN; Chitsaz S; Mannion A; Mookhoek A; Wisneski A; Guccione JM; Hope MD; Ge L; Tseng EE
    Ann Thorac Surg; 2013 Jul; 96(1):50-8. PubMed ID: 23731613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta.
    Vorp DA; Schiro BJ; Ehrlich MP; Juvonen TS; Ergin MA; Griffith BP
    Ann Thorac Surg; 2003 Apr; 75(4):1210-4. PubMed ID: 12683565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-specific finite element analysis of ascending thoracic aortic aneurysm.
    Wisneski AD; Mookhoek A; Chitsaz S; Hope MD; Guccione JM; Ge L; Tseng EE
    J Heart Valve Dis; 2014 Nov; 23(6):765-72. PubMed ID: 25790625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro analysis of localized aneurysm rupture.
    Romo A; Badel P; Duprey A; Favre JP; Avril S
    J Biomech; 2014 Feb; 47(3):607-16. PubMed ID: 24406100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential tensile strength and collagen composition in ascending aortic aneurysms by aortic valve phenotype.
    Pichamuthu JE; Phillippi JA; Cleary DA; Chew DW; Hempel J; Vorp DA; Gleason TG
    Ann Thorac Surg; 2013 Dec; 96(6):2147-54. PubMed ID: 24021768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-invasive methodology for ATAA rupture risk estimation.
    Trabelsi O; Gutierrez M; Farzaneh S; Duprey A; Avril S
    J Biomech; 2018 Jan; 66():119-126. PubMed ID: 29180233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wall stress analyses in patients with ≥5 cm versus <5 cm ascending thoracic aortic aneurysm.
    Wang Z; Flores N; Lum M; Wisneski AD; Xuan Y; Inman J; Hope MD; Saloner DA; Guccione JM; Ge L; Tseng EE
    J Thorac Cardiovasc Surg; 2021 Nov; 162(5):1452-1459. PubMed ID: 32178922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse identification of local stiffness across ascending thoracic aortic aneurysms.
    Farzaneh S; Trabelsi O; Avril S
    Biomech Model Mechanobiol; 2019 Feb; 18(1):137-153. PubMed ID: 30145618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance.
    Campobasso R; Condemi F; Viallon M; Croisille P; Campisi S; Avril S
    Cardiovasc Eng Technol; 2018 Dec; 9(4):707-722. PubMed ID: 30341731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Characterization of Ascending Aortic Aneurysms.
    Smoljkić M; Fehervary H; Van den Bergh P; Jorge-Peñas A; Kluyskens L; Dymarkowski S; Verbrugghe P; Meuris B; Vander Sloten J; Famaey N
    Biomech Model Mechanobiol; 2017 Apr; 16(2):705-720. PubMed ID: 27838784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired mechanics and matrix metalloproteinases/inhibitors expression in female ascending thoracic aortic aneurysms.
    Sokolis DP; Iliopoulos DC
    J Mech Behav Biomed Mater; 2014 Jun; 34():154-64. PubMed ID: 24583920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On strain-based rupture criterion for ascending aortic aneurysm: The role of fiber waviness.
    He X; Lu J
    Acta Biomater; 2022 Sep; 149():51-59. PubMed ID: 35760348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating ascending aortic aneurysm tissue toughness: Dependence on collagen and elastin contents.
    Shahmansouri N; Alreshidan M; Emmott A; Lachapelle K; Cartier R; Leask RL; Mongrain R
    J Mech Behav Biomed Mater; 2016 Dec; 64():262-71. PubMed ID: 27526037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms.
    Tavares Monteiro JA; da Silva ES; Raghavan ML; Puech-Leão P; de Lourdes Higuchi M; Otoch JP
    J Vasc Surg; 2014 May; 59(5):1393-401.e1-2. PubMed ID: 23891493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Local Arterial Stiffness to Assess the Risk of Rupture of Ascending Thoracic Aortic Aneurysms.
    Farzaneh S; Trabelsi O; Chavent B; Avril S
    Ann Biomed Eng; 2019 Apr; 47(4):1038-1050. PubMed ID: 30671756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating aortic thoracic aneurysm rupture risk using tension-strain data in physiological pressure range: an in vitro study.
    He X; Avril S; Lu J
    Biomech Model Mechanobiol; 2021 Apr; 20(2):683-699. PubMed ID: 33389275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms.
    Davis FM; Luo Y; Avril S; Duprey A; Lu J
    Biomech Model Mechanobiol; 2015 Oct; 14(5):967-78. PubMed ID: 25576390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.