BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 27395827)

  • 21. Wear and creep of highly crosslinked polyethylene against cobalt chrome and ceramic femoral heads.
    Galvin AL; Jennings LM; Tipper JL; Ingham E; Fisher J
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1175-83. PubMed ID: 21138235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of friction and lubrication of different hip prostheses.
    Scholes SC; Unsworth A
    Proc Inst Mech Eng H; 2000; 214(1):49-57. PubMed ID: 10718050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ceramic on ceramic hip prostheses: a review of past and modern materials.
    Macdonald N; Bankes M
    Arch Orthop Trauma Surg; 2014 Sep; 134(9):1325-33. PubMed ID: 25038921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery rate data for silicon nitride nanoparticle isolation using sodium polytungstate density gradients.
    Patel J; Lal S; Wilshaw SP; Hall RM; Tipper JL
    Data Brief; 2018 Aug; 19():1474-1476. PubMed ID: 30229019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wear products of total hip arthroplasty: The case of polyethylene.
    Massin P; Achour S
    Morphologie; 2017 Mar; 101(332):1-8. PubMed ID: 27426252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions.
    Wang A; Essner A; Stark C; Dumbleton JH
    Biomaterials; 1996 May; 17(9):865-71. PubMed ID: 8718931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of low volumes of wear debris from rat stifle joint tissues using a novel particle isolation method.
    Patel J; Lal S; Nuss K; Wilshaw SP; von Rechenberg B; Hall RM; Tipper JL
    Acta Biomater; 2018 Apr; 71():339-350. PubMed ID: 29505889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wear mechanisms in ceramic hip implants.
    Slonaker M; Goswami T
    J Surg Orthop Adv; 2004; 13(2):94-105. PubMed ID: 15281406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ceramic-ceramic and metal-polyethylene total hip replacements: comparison of pseudomembranes after loosening.
    Lerouge S; Huk O; Yahia L; Witvoet J; Sedel L
    J Bone Joint Surg Br; 1997 Jan; 79(1):135-9. PubMed ID: 9020462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An easy technique to digest and isolate UHMWPE wear particles from a hip joint simulator.
    Affatato S; Emiliani D; Bersaglia G; Traina F; Toni A
    Int J Artif Organs; 2004 May; 27(5):424-32. PubMed ID: 15202822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation.
    Williams S; Butterfield M; Stewart T; Ingham E; Stone M; Fisher J
    Proc Inst Mech Eng H; 2003; 217(2):147-53. PubMed ID: 12666782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator.
    Firkins PJ; Tipper JL; Saadatzadeh MR; Ingham E; Stone MH; Farrar R; Fisher J
    Biomed Mater Eng; 2001; 11(2):143-57. PubMed ID: 11352113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wear of 36-mm BIOLOX(R) delta ceramic-on-ceramic bearing in total hip replacements under edge loading conditions.
    Al-Hajjar M; Fisher J; Tipper JL; Williams S; Jennings LM
    Proc Inst Mech Eng H; 2013 May; 227(5):535-42. PubMed ID: 23637263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis.
    Firkins PJ; Tipper JL; Ingham E; Stone MH; Farrar R; Fisher J
    J Biomech; 2001 Oct; 34(10):1291-8. PubMed ID: 11522308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators.
    Tipper JL; Galvin AL; Williams S; McEwen HM; Stone MH; Ingham E; Fisher J
    J Biomed Mater Res A; 2006 Sep; 78(3):473-80. PubMed ID: 16721797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing ceramic-metal to metal-metal total hip replacements--a simulator study of metal wear and ion release in 32- and 38-mm bearings.
    Ishida T; Clarke IC; Donaldson TK; Shirasu H; Shishido T; Yamamoto K
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):887-896. PubMed ID: 19598291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of lubricant on the morphology of ultra-high molecular weight polyethylene wear debris generated in laboratory tests.
    Besong AA; Tipper JL; Mathews BJ; Ingham E; Stone MH; Fisher J
    Proc Inst Mech Eng H; 1999; 213(2):155-8. PubMed ID: 10333687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of analyzed lubricant volumes on the amount and characteristics of generated wear particles from three different types of polyethylene liner materials.
    Markhoff J; Zietz C; Fabry C; Fulda G; Bader R
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1299-1306. PubMed ID: 28636252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Failure of an ACCIS metal-on-metal hip resurfacing prosthesis: A case report.
    Bone MC; Naylor A
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1188-1194. PubMed ID: 29105561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of ceramic-on-metal and metal-on-metal hip prostheses under adverse conditions.
    Williams S; Al-Hajjar M; Isaac GH; Fisher J
    J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):770-5. PubMed ID: 23359608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.