These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 27396343)
1. Small-Molecule-Based Lineage Reprogramming Creates Functional Astrocytes. Tian E; Sun G; Sun G; Chao J; Ye P; Warden C; Riggs AD; Shi Y Cell Rep; 2016 Jul; 16(3):781-92. PubMed ID: 27396343 [TBL] [Abstract][Full Text] [Related]
2. Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes. Kondo T; Funayama M; Miyake M; Tsukita K; Era T; Osaka H; Ayaki T; Takahashi R; Inoue H Acta Neuropathol Commun; 2016 Jul; 4(1):69. PubMed ID: 27402089 [TBL] [Abstract][Full Text] [Related]
3. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Sosunov AA; McKhann GM; Goldman JE Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321 [TBL] [Abstract][Full Text] [Related]
4. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. Lin NH; Yang AW; Chang CH; Perng MD FASEB J; 2021 May; 35(5):e21614. PubMed ID: 33908669 [TBL] [Abstract][Full Text] [Related]
5. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease. Li L; Tian E; Chen X; Chao J; Klein J; Qu Q; Sun G; Sun G; Huang Y; Warden CD; Ye P; Feng L; Li X; Cui Q; Sultan A; Douvaras P; Fossati V; Sanjana NE; Riggs AD; Shi Y Cell Stem Cell; 2018 Aug; 23(2):239-251.e6. PubMed ID: 30075130 [TBL] [Abstract][Full Text] [Related]
6. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Liu X; Bolteus AJ; Balkin DM; Henschel O; Bordey A Glia; 2006 Oct; 54(5):394-410. PubMed ID: 16886203 [TBL] [Abstract][Full Text] [Related]
7. Aberrant astrocyte Ca Saito K; Shigetomi E; Yasuda R; Sato R; Nakano M; Tashiro K; Tanaka KF; Ikenaka K; Mikoshiba K; Mizuta I; Yoshida T; Nakagawa M; Mizuno T; Koizumi S Glia; 2018 May; 66(5):1053-1067. PubMed ID: 29383757 [TBL] [Abstract][Full Text] [Related]
8. Direct Reprogramming of Fibroblasts to Astrocytes Using Small Molecules. Tian E; Zhang M; Shi Y Methods Mol Biol; 2021; 2352():45-55. PubMed ID: 34324179 [TBL] [Abstract][Full Text] [Related]
9. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. Tian R; Wu X; Hagemann TL; Sosunov AA; Messing A; McKhann GM; Goldman JE J Neuropathol Exp Neurol; 2010 Apr; 69(4):335-45. PubMed ID: 20448479 [TBL] [Abstract][Full Text] [Related]
10. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice. Cho W; Messing A Exp Cell Res; 2009 Apr; 315(7):1260-72. PubMed ID: 19146851 [TBL] [Abstract][Full Text] [Related]
11. Direct Cell Reprogramming of Mouse Fibroblasts into Functional Astrocytes Using Lentiviral Overexpression of the Transcription Factors NFIA, NFIB, and SOX9. Qiu B; de Vries RJ; Caiazzo M Methods Mol Biol; 2021; 2352():31-43. PubMed ID: 34324178 [TBL] [Abstract][Full Text] [Related]
12. Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Steiner B; Kronenberg G; Jessberger S; Brandt MD; Reuter K; Kempermann G Glia; 2004 Apr; 46(1):41-52. PubMed ID: 14999812 [TBL] [Abstract][Full Text] [Related]
13. Generation of induced neurons via direct conversion in vivo. Torper O; Pfisterer U; Wolf DA; Pereira M; Lau S; Jakobsson J; Björklund A; Grealish S; Parmar M Proc Natl Acad Sci U S A; 2013 Apr; 110(17):7038-43. PubMed ID: 23530235 [TBL] [Abstract][Full Text] [Related]
14. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease. Hagemann TL; Boelens WC; Wawrousek EF; Messing A Hum Mol Genet; 2009 Apr; 18(7):1190-9. PubMed ID: 19129171 [TBL] [Abstract][Full Text] [Related]
15. CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons. Aravantinou-Fatorou K; Ortega F; Chroni-Tzartou D; Antoniou N; Poulopoulou C; Politis PK; Berninger B; Matsas R; Thomaidou D Stem Cell Reports; 2015 Sep; 5(3):405-18. PubMed ID: 26321141 [TBL] [Abstract][Full Text] [Related]
16. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Tian R; Gregor M; Wiche G; Goldman JE Am J Pathol; 2006 Mar; 168(3):888-97. PubMed ID: 16507904 [TBL] [Abstract][Full Text] [Related]
17. Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes. Jones JR; Kong L; Hanna MG; Hoffman B; Krencik R; Bradley R; Hagemann T; Choi J; Doers M; Dubovis M; Sherafat MA; Bhattacharyya A; Kendziorski C; Audhya A; Messing A; Zhang SC Cell Rep; 2018 Oct; 25(4):947-958.e4. PubMed ID: 30355500 [TBL] [Abstract][Full Text] [Related]
18. Long-lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin(+)/GFAP(-) cells in cell proliferation. Sergent-Tanguy S; Michel DC; Neveu I; Naveilhan P J Neurosci Res; 2006 Jun; 83(8):1515-24. PubMed ID: 16612832 [TBL] [Abstract][Full Text] [Related]
19. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease. Moody LR; Barrett-Wilt GA; Sussman MR; Messing A J Biol Chem; 2017 Apr; 292(14):5814-5824. PubMed ID: 28223355 [TBL] [Abstract][Full Text] [Related]
20. Small molecules reprogram reactive astrocytes into neuronal cells in the injured adult spinal cord. Tan Z; Qin S; Liu H; Huang X; Pu Y; He C; Yuan Y; Su Z J Adv Res; 2024 May; 59():111-127. PubMed ID: 37380102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]