BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27396410)

  • 1. Structure-Activity Relationship Study Reveals Benzazepine Derivatives of Luteolin as New Aldose Reductase Inhibitors for Diabetic Cataract.
    Sebastian J
    Curr Drug Discov Technol; 2016; 13(3):152-163. PubMed ID: 27396410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective effect of Tephrosia purpurea in diabetic cataract through aldose reductase inhibitory activity.
    Bhadada SV; Vyas VK; Goyal RK
    Biomed Pharmacother; 2016 Oct; 83():221-228. PubMed ID: 27372406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aldose reductase inhibitors for diabetic complications: Receptor induced atom-based 3D-QSAR analysis, synthesis and biological evaluation.
    Vyas B; Singh M; Kaur M; Bahia MS; Jaggi AS; Silakari O; Singh B
    J Mol Graph Model; 2015 Jun; 59():59-71. PubMed ID: 25911954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aldose reductase: a window to the treatment of diabetic complications?
    Crabbe MJ; Goode D
    Prog Retin Eye Res; 1998 Jul; 17(3):313-83. PubMed ID: 9695797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential use of aldose reductase inhibitors to prevent diabetic complications.
    Zenon GJ; Abobo CV; Carter BL; Ball DW
    Clin Pharm; 1990 Jun; 9(6):446-57. PubMed ID: 2114249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin K1 prevents diabetic cataract by inhibiting lens aldose reductase 2 (ALR2) activity.
    Thiagarajan R; Varsha MKNS; Srinivasan V; Ravichandran R; Saraboji K
    Sci Rep; 2019 Oct; 9(1):14684. PubMed ID: 31604989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-activity analysis of 5-arylidene-2,4-thiazolidinediones as aldose reductase inhibitors.
    Sambasivarao SV; Soni LK; Gupta AK; Hanumantharao P; Kaskhedikar SG
    Bioorg Med Chem Lett; 2006 Feb; 16(3):512-20. PubMed ID: 16297625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Updates on Aldose Reductase Inhibitors for Management of Diabetic Complications and Non-diabetic Diseases.
    Grewal AS; Bhardwaj S; Pandita D; Lather V; Sekhon BS
    Mini Rev Med Chem; 2016; 16(2):120-62. PubMed ID: 26349493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors.
    Wang QQ; Cheng N; Zheng XW; Peng SM; Zou XQ
    Bioorg Med Chem; 2013 Jul; 21(14):4301-10. PubMed ID: 23683835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-QSAR studies on a series of 5-arylidine-2, 4-thiazolidinediones as aldose reductase inhibitors: a self-organizing molecular field analysis approach.
    Thareja S; Aggarwal S; Bhardwaj TR; Kumar M
    Med Chem; 2010 Jan; 6(1):30-6. PubMed ID: 20402658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications.
    Van Zandt MC; Jones ML; Gunn DE; Geraci LS; Jones JH; Sawicki DR; Sredy J; Jacot JL; Dicioccio AT; Petrova T; Mitschler A; Podjarny AD
    J Med Chem; 2005 May; 48(9):3141-52. PubMed ID: 15857120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of new inhibitors of aldose reductase from molecular docking and database screening.
    Rastelli G; Ferrari AM; Costantino L; Gamberini MC
    Bioorg Med Chem; 2002 May; 10(5):1437-50. PubMed ID: 11886806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative importance of aldose reductase versus nonenzymatic glycosylation on sugar cataract formation in diabetic rats.
    Kador PF; Lee JW; Fujisawa S; Blessing K; Lou MF
    J Ocul Pharmacol Ther; 2000 Apr; 16(2):149-60. PubMed ID: 10803425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aldose reductase, ocular diabetic complications and the development of topical Kinostat(®).
    Kador PF; Wyman M; Oates PJ
    Prog Retin Eye Res; 2016 Sep; 54():1-29. PubMed ID: 27102270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aldose reductase and its inhibition in the control of diabetic complications.
    Narayanan S
    Ann Clin Lab Sci; 1993; 23(2):148-58. PubMed ID: 8457142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of TZD Scaffold as Potential ARIs: Pharmacophore Modeling, Atom-based 3D QSAR and Docking Studies.
    Dahiya L; Mahapatra MK; Kaur R; Kumar V; Kumar M
    Comb Chem High Throughput Screen; 2017; 20(4):310-320. PubMed ID: 28302016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications.
    Saraswat M; Muthenna P; Suryanarayana P; Petrash JM; Reddy GB
    Asia Pac J Clin Nutr; 2008; 17(4):558-65. PubMed ID: 19114390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent studies of aldose reductase enzyme inhibition for diabetic complications.
    Suzen S; Buyukbingol E
    Curr Med Chem; 2003 Aug; 10(15):1329-52. PubMed ID: 12871133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Compounds as Source of Aldose Reductase (AR) Inhibitors for the Treatment of Diabetic Complications: A Mini Review.
    Grewal AS; Thapa K; Kanojia N; Sharma N; Singh S
    Curr Drug Metab; 2020; 21(14):1091-1116. PubMed ID: 33069193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aldose reductase inhibitors.
    Kirchain WR; Rendell MS
    Pharmacotherapy; 1990; 10(5):326-36. PubMed ID: 2122421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.