These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 27397026)
1. Carbon dioxide capture strategies from flue gas using microalgae: a review. Thomas DM; Mechery J; Paulose SV Environ Sci Pollut Res Int; 2016 Sep; 23(17):16926-40. PubMed ID: 27397026 [TBL] [Abstract][Full Text] [Related]
2. [Progress in biofixation of CO2 from combustion flue gas by microalgae]. Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040 [TBL] [Abstract][Full Text] [Related]
3. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review. Yen HW; Ho SH; Chen CY; Chang JS Biotechnol J; 2015 Jun; 10(6):829-39. PubMed ID: 25931246 [TBL] [Abstract][Full Text] [Related]
4. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Cheah WY; Show PL; Chang JS; Ling TC; Juan JC Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054 [TBL] [Abstract][Full Text] [Related]
5. Biological CO Duarte JH; de Morais EG; Radmann EM; Costa JAV Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576 [TBL] [Abstract][Full Text] [Related]
6. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide. Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663 [TBL] [Abstract][Full Text] [Related]
7. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094 [TBL] [Abstract][Full Text] [Related]
8. Improving growth rate of microalgae in a 1191m(2) raceway pond to fix CO2 from flue gas in a coal-fired power plant. Cheng J; Yang Z; Huang Y; Huang L; Hu L; Xu D; Zhou J; Cen K Bioresour Technol; 2015 Aug; 190():235-41. PubMed ID: 25958147 [TBL] [Abstract][Full Text] [Related]
9. Mass transfer characteristics and effect of flue gas used in microalgae culture. Wang B; Xu YF; Sun ZL Appl Microbiol Biotechnol; 2022 Nov; 106(21):7013-7025. PubMed ID: 36173453 [TBL] [Abstract][Full Text] [Related]
10. An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas. Zhu X; Rong J; Chen H; He C; Hu W; Wang Q Appl Microbiol Biotechnol; 2016 Mar; 100(5):2073-82. PubMed ID: 26754812 [TBL] [Abstract][Full Text] [Related]
11. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285 [TBL] [Abstract][Full Text] [Related]
12. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review. Huang G; Chen F; Kuang Y; He H; Qin A Appl Biochem Biotechnol; 2016 Mar; 178(6):1220-38. PubMed ID: 26695777 [TBL] [Abstract][Full Text] [Related]
13. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Yadav G; Karemore A; Dash SK; Sen R Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786 [TBL] [Abstract][Full Text] [Related]
14. Flue-gas-influenced heavy metal bioaccumulation by the indigenous microalgae Desmodesmus communis LUCC 002. Palanisami S; Lee K; Balakrishnan B; Nam PK Environ Technol; 2015; 36(1-4):463-9. PubMed ID: 25184415 [TBL] [Abstract][Full Text] [Related]
15. Integrated lipid production, CO Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683 [TBL] [Abstract][Full Text] [Related]
16. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Van Den Hende S; Vervaeren H; Boon N Biotechnol Adv; 2012; 30(6):1405-24. PubMed ID: 22425735 [TBL] [Abstract][Full Text] [Related]
17. Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT. Li XK; Xu JL; Guo Y; Zhou WZ; Yuan ZH Bioresour Technol; 2015 Aug; 190():339-44. PubMed ID: 25965950 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO Aslam A; Thomas-Hall SR; Mughal T; Zaman QU; Ehsan N; Javied S; Schenk PM J Environ Manage; 2019 Jul; 241():243-250. PubMed ID: 31005725 [TBL] [Abstract][Full Text] [Related]
19. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Jiang Y; Zhang W; Wang J; Chen Y; Shen S; Liu T Bioresour Technol; 2013 Jan; 128():359-64. PubMed ID: 23201515 [TBL] [Abstract][Full Text] [Related]
20. Modification and improvement of microalgae strains for strengthening CO Cheng J; Zhu Y; Zhang Z; Yang W Bioresour Technol; 2019 Nov; 291():121850. PubMed ID: 31358426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]