These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 2739734)

  • 1. Mapping the transition state and pathway of protein folding by protein engineering.
    Matouschek A; Kellis JT; Serrano L; Fersht AR
    Nature; 1989 Jul; 340(6229):122-6. PubMed ID: 2739734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure.
    Serrano L; Matouschek A; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):805-18. PubMed ID: 1569558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the energy surface of protein folding by structure-reactivity relationships and engineered proteins: observation of Hammond behavior for the gross structure of the transition state and anti-Hammond behavior for structural elements for unfolding/folding of barnase.
    Matthews JM; Fersht AR
    Biochemistry; 1995 May; 34(20):6805-14. PubMed ID: 7756312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient folding intermediates characterized by protein engineering.
    Matouschek A; Kellis JT; Serrano L; Bycroft M; Fersht AR
    Nature; 1990 Aug; 346(6283):440-5. PubMed ID: 2377205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway and stability of protein folding.
    Fersht AR; Bycroft M; Horovitz A; Kellis JT; Matouschek A; Serrano L
    Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):171-6. PubMed ID: 1678536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The folding of an enzyme. IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure.
    Matouschek A; Serrano L; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):819-35. PubMed ID: 1569559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2.
    López-Hernández E; Serrano L
    Fold Des; 1996; 1(1):43-55. PubMed ID: 9079363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COSMIC analysis of the major alpha-helix of barnase during folding.
    Horovitz A; Serrano L; Fersht AR
    J Mol Biol; 1991 May; 219(1):5-9. PubMed ID: 2023260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The folding pathway of barnase: the rate-limiting transition state and a hidden intermediate under native conditions.
    Vu ND; Feng H; Bai Y
    Biochemistry; 2004 Mar; 43(12):3346-56. PubMed ID: 15035606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of protein denaturation: solvation of the hydrophobic cores and secondary structure of barnase.
    Caflisch A; Karplus M
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1746-50. PubMed ID: 8127876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping transition states of protein unfolding by protein engineering of ligand-binding sites.
    Sancho J; Meiering EM; Fersht AR
    J Mol Biol; 1991 Oct; 221(3):1007-14. PubMed ID: 1658330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The folding of an enzyme. V. H/2H exchange-nuclear magnetic resonance studies on the folding pathway of barnase: complementarity to and agreement with protein engineering studies.
    Matouschek A; Serrano L; Meiering EM; Bycroft M; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):837-45. PubMed ID: 1569560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of hydrophobic interactions to protein stability.
    Kellis JT; Nyberg K; Sali D; Fersht AR
    Nature; 1988 Jun; 333(6175):784-6. PubMed ID: 3386721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding.
    Wong KB; Clarke J; Bond CJ; Neira JL; Freund SM; Fersht AR; Daggett V
    J Mol Biol; 2000 Mar; 296(5):1257-82. PubMed ID: 10698632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of complementary side-chain packing in a protein hydrophobic core.
    Kellis JT; Nyberg K; Fersht AR
    Biochemistry; 1989 May; 28(11):4914-22. PubMed ID: 2669964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of definable nucleation sites in the rate-limiting transition state of barnase under native conditions.
    Chu RA; Bai Y
    J Mol Biol; 2002 Jan; 315(4):759-70. PubMed ID: 11812145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid and thermal denaturation of barnase investigated by molecular dynamics simulations.
    Caflisch A; Karplus M
    J Mol Biol; 1995 Oct; 252(5):672-708. PubMed ID: 7563082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of transient conformations in the folding pathway of barnase: reorganization of the folding intermediate at low pH.
    Oliveberg M; Fersht AR
    Biochemistry; 1996 Feb; 35(8):2738-49. PubMed ID: 8611580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities.
    Buckle AM; Cramer P; Fersht AR
    Biochemistry; 1996 Apr; 35(14):4298-305. PubMed ID: 8605178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain.
    Villegas V; Martínez JC; Avilés FX; Serrano L
    J Mol Biol; 1998 Nov; 283(5):1027-36. PubMed ID: 9799641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.