These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27397518)

  • 1. A Distributed Recurrent Network Contributes to Temporally Precise Vocalizations.
    Hamaguchi K; Tanaka M; Mooney R
    Neuron; 2016 Aug; 91(3):680-93. PubMed ID: 27397518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of vocal and respiratory patterns in birdsong: dissection of forebrain and brainstem mechanisms using temperature.
    Andalman AS; Foerster JN; Fee MS
    PLoS One; 2011; 6(9):e25461. PubMed ID: 21980466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telencephalic neurons monosynaptically link brainstem and forebrain premotor networks necessary for song.
    Roberts TF; Klein ME; Kubke MF; Wild JM; Mooney R
    J Neurosci; 2008 Mar; 28(13):3479-89. PubMed ID: 18367614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Lateral differences in the forebrain and midbrain control of learned vocalizations in adult male Zebra Finch (Taeniopygia guttata)].
    Zeng XY; Li DF
    Dongwuxue Yanjiu; 2013 Feb; 34(1):1-7. PubMed ID: 23389971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brainstem and forebrain contributions to the generation of learned motor behaviors for song.
    Ashmore RC; Wild JM; Schmidt MF
    J Neurosci; 2005 Sep; 25(37):8543-54. PubMed ID: 16162936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using temperature to analyse temporal dynamics in the songbird motor pathway.
    Long MA; Fee MS
    Nature; 2008 Nov; 456(7219):189-94. PubMed ID: 19005546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of inhibition and excitation shapes a premotor neural sequence.
    Kosche G; Vallentin D; Long MA
    J Neurosci; 2015 Jan; 35(3):1217-27. PubMed ID: 25609636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A distributed neural network model for the distinct roles of medial and lateral HVC in zebra finch song production.
    Galvis D; Wu W; Hyson RL; Johnson F; Bertram R
    J Neurophysiol; 2017 Aug; 118(2):677-692. PubMed ID: 28381490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LMAN lesions prevent song degradation after deafening without reducing HVC neuron addition.
    Scott LL; Nordeen EJ; Nordeen KW
    Dev Neurobiol; 2007 Sep; 67(11):1407-18. PubMed ID: 17694506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic reconstruction of physiological gestures used in a model of birdsong production.
    Boari S; Perl YS; Amador A; Margoliash D; Mindlin GB
    J Neurophysiol; 2015 Nov; 114(5):2912-22. PubMed ID: 26378204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-up activation of the vocal motor forebrain by the respiratory brainstem.
    Ashmore RC; Renk JA; Schmidt MF
    J Neurosci; 2008 Mar; 28(10):2613-23. PubMed ID: 18322104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An associational model of birdsong sensorimotor learning I. Efference copy and the learning of song syllables.
    Troyer TW; Doupe AJ
    J Neurophysiol; 2000 Sep; 84(3):1204-23. PubMed ID: 10979996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A specialized forebrain circuit for vocal babbling in the juvenile songbird.
    Aronov D; Andalman AS; Fee MS
    Science; 2008 May; 320(5876):630-4. PubMed ID: 18451295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural circuits. Inhibition protects acquired song segments during vocal learning in zebra finches.
    Vallentin D; Kosche G; Lipkind D; Long MA
    Science; 2016 Jan; 351(6270):267-71. PubMed ID: 26816377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Axonal Conduction Shapes the Spatiotemporal Properties of Neural Sequences.
    Egger R; Tupikov Y; Elmaleh M; Katlowitz KA; Benezra SE; Picardo MA; Moll F; Kornfeld J; Jin DZ; Long MA
    Cell; 2020 Oct; 183(2):537-548.e12. PubMed ID: 33064989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population coding of song element sequence in the Bengalese finch HVC.
    Nishikawa J; Okada M; Okanoya K
    Eur J Neurosci; 2008 Jun; 27(12):3273-83. PubMed ID: 18598266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forebrain circuits underlying the social modulation of vocal communication signals.
    Matheson LE; Sun H; Sakata JT
    Dev Neurobiol; 2016 Jan; 76(1):47-63. PubMed ID: 25959605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Female zebra finches do not sing yet share neural pathways necessary for singing in males.
    Shaughnessy DW; Hyson RL; Bertram R; Wu W; Johnson F
    J Comp Neurol; 2019 Mar; 527(4):843-855. PubMed ID: 30370534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily and developmental modulation of "premotor" activity in the birdsong system.
    Day NF; Kinnischtzke AK; Adam M; Nick TA
    Dev Neurobiol; 2009 Oct; 69(12):796-810. PubMed ID: 19650042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrophysiological properties of HVC-RA synaptic transmission in the adult zebra finch in vivo.
    Meng W; Wang XD; Xiao P; Li DF
    Sheng Li Xue Bao; 2006 Jun; 58(3):232-6. PubMed ID: 16786107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.