BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27397568)

  • 21. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy.
    Jaramillo V; Schoch SF; Markovic A; Kohler M; Huber R; Lustenberger C; Kurth S
    Neuroimage; 2023 Apr; 269():119924. PubMed ID: 36739104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primate somatosensory cortical neurons are entrained to both spontaneous and peripherally evoked spindle oscillations.
    Sritharan SY; Contreras-Hernández E; Richardson AG; Lucas TH
    J Neurophysiol; 2020 Jan; 123(1):300-307. PubMed ID: 31800329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theta Bursts Precede, and Spindles Follow, Cortical and Thalamic Downstates in Human NREM Sleep.
    Gonzalez CE; Mak-McCully RA; Rosen BQ; Cash SS; Chauvel PY; Bastuji H; Rey M; Halgren E
    J Neurosci; 2018 Nov; 38(46):9989-10001. PubMed ID: 30242045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording.
    Urakami Y
    J Clin Neurophysiol; 2008 Feb; 25(1):13-24. PubMed ID: 18303556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of topographically specific sleep spindles in mice.
    Kim D; Hwang E; Lee M; Sung H; Choi JH
    Sleep; 2015 Jan; 38(1):85-96. PubMed ID: 25325451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The laminar profile of sleep spindles in humans.
    Ujma PP; Hajnal B; Bódizs R; Gombos F; Erőss L; Wittner L; Halgren E; Cash SS; Ulbert I; Fabó D
    Neuroimage; 2021 Feb; 226():117587. PubMed ID: 33249216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic interaction of spindles and gamma activity during cortical slow oscillations and its modulation by subcortical afferents.
    Valencia M; Artieda J; Bolam JP; Mena-Segovia J
    PLoS One; 2013; 8(7):e67540. PubMed ID: 23844020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles.
    Ferrarelli F; Peterson MJ; Sarasso S; Riedner BA; Murphy MJ; Benca RM; Bria P; Kalin NH; Tononi G
    Am J Psychiatry; 2010 Nov; 167(11):1339-48. PubMed ID: 20843876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.
    Mölle M; Eschenko O; Gais S; Sara SJ; Born J
    Eur J Neurosci; 2009 Mar; 29(5):1071-81. PubMed ID: 19245368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of corpus callosum in sleep spindle synchronization and coupling with slow waves.
    Bernardi G; Avvenuti G; Cataldi J; Lattanzi S; Ricciardi E; Polonara G; Silvestrini M; Siclari F; Fabri M; Bellesi M
    Brain Commun; 2021; 3(2):fcab108. PubMed ID: 34164621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slow spindles are associated with cortical high frequency activity.
    Hashemi NS; Dehnavi F; Moghimi S; Ghorbani M
    Neuroimage; 2019 Apr; 189():71-84. PubMed ID: 30639838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of sleep spindles and coupling to slow oscillations following motor learning in adult mice.
    Kam K; Pettibone WD; Shim K; Chen RK; Varga AW
    Neurobiol Learn Mem; 2019 Dec; 166():107100. PubMed ID: 31622665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential spike timing and phase dynamics of reticular thalamic and prefrontal cortical neuronal populations during sleep spindles.
    Gardner RJ; Hughes SW; Jones MW
    J Neurosci; 2013 Nov; 33(47):18469-80. PubMed ID: 24259570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans.
    Niknazar M; Krishnan GP; Bazhenov M; Mednick SC
    PLoS One; 2015; 10(12):e0144720. PubMed ID: 26671283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slow-wave activity preceding the onset of 10-15-Hz sleep spindles and 5-9-Hz oscillations in electroencephalograms in rats with and without absence seizures.
    Sitnikova E; Grubov V; Hramov AE
    J Sleep Res; 2020 Dec; 29(6):e12927. PubMed ID: 31578791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
    Yang M; Logothetis NK; Eschenko O
    J Neurosci; 2019 Jan; 39(3):434-444. PubMed ID: 30459228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dyscoordination of non-rapid eye movement sleep oscillations in autism spectrum disorder.
    Mylonas D; Machado S; Larson O; Patel R; Cox R; Vangel M; Maski K; Stickgold R; Manoach DS
    Sleep; 2022 Mar; 45(3):. PubMed ID: 35022792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential.
    Marshall L; Mölle M; Born J
    Neuroscience; 2003; 121(4):1047-53. PubMed ID: 14580954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular evidence for incompatibility between spindle and delta oscillations in thalamocortical neurons of cat.
    Nuñez A; Curró Dossi R; Contreras D; Steriade M
    Neuroscience; 1992; 48(1):75-85. PubMed ID: 1584427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.