These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27397568)

  • 41. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties.
    Krishnan GP; Rosen BQ; Chen JY; Muller L; Sejnowski TJ; Cash SS; Halgren E; Bazhenov M
    PLoS Comput Biol; 2018 Jun; 14(6):e1006171. PubMed ID: 29949575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporo-spatial correlations between scalp and centromedian thalamic EEG activities of stage II slow wave sleep in patients with generalized seizures of the cryptogenic Lennox-Gastaut syndrome.
    Velasco M; Eugenia-Díaz-de Leon A; Márquez I; Brito F; Carrillo-Ruiz JD; Velasco AL; Velasco F
    Clin Neurophysiol; 2002 Jan; 113(1):25-32. PubMed ID: 11801421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep.
    Schabus M; Dang-Vu TT; Albouy G; Balteau E; Boly M; Carrier J; Darsaud A; Degueldre C; Desseilles M; Gais S; Phillips C; Rauchs G; Schnakers C; Sterpenich V; Vandewalle G; Luxen A; Maquet P
    Proc Natl Acad Sci U S A; 2007 Aug; 104(32):13164-9. PubMed ID: 17670944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep.
    Niethard N; Brodt S; Born J
    J Neurosci; 2021 May; 41(19):4212-4222. PubMed ID: 33833082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selection of stimulus parameters for enhancing slow wave sleep events with a neural-field theory thalamocortical model.
    Torres FA; Orio P; Escobar MJ
    PLoS Comput Biol; 2021 Jul; 17(7):e1008758. PubMed ID: 34329289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross-Frequency Slow Oscillation-Spindle Coupling in a Biophysically Realistic Thalamocortical Neural Mass Model.
    Jajcay N; Cakan C; Obermayer K
    Front Comput Neurosci; 2022; 16():769860. PubMed ID: 35603132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep.
    Mölle M; Marshall L; Gais S; Born J
    J Neurosci; 2002 Dec; 22(24):10941-7. PubMed ID: 12486189
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Slow oscillations during sleep coordinate interregional communication in cortical networks.
    Cox R; van Driel J; de Boer M; Talamini LM
    J Neurosci; 2014 Dec; 34(50):16890-901. PubMed ID: 25505340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep.
    Cantero JL; Atienza M; Salas RM; Dominguez-Marin E
    J Neurosci; 2002 Jun; 22(11):4702-8. PubMed ID: 12040077
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spindle oscillations during cortical spreading depression in naturally sleeping cats.
    Contreras D; Destexhe A; Steriade M
    Neuroscience; 1997 Apr; 77(4):933-6. PubMed ID: 9130774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat.
    Zheng TW; O'Brien TJ; Kulikova SP; Reid CA; Morris MJ; Pinault D
    Eur J Neurosci; 2014 Mar; 39(5):788-99. PubMed ID: 24308357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dorsal vs. ventral differences in fast Up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat.
    Gretenkord S; Rees A; Whittington MA; Gartside SE; LeBeau FE
    J Neurophysiol; 2017 Mar; 117(3):1126-1142. PubMed ID: 28003411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: A high-density EEG investigation.
    Plante DT; Goldstein MR; Cook JD; Smith R; Riedner BA; Rumble ME; Jelenchick L; Roth A; Tononi G; Benca RM; Peterson MJ
    Eur Neuropsychopharmacol; 2015 Oct; 25(10):1600-10. PubMed ID: 26195197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity.
    Ayoub A; Aumann D; Hörschelmann A; Kouchekmanesch A; Paul P; Born J; Marshall L
    Sleep; 2013 Jun; 36(6):905-11. PubMed ID: 23729934
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cortical Ripples during NREM Sleep and Waking in Humans.
    Dickey CW; Verzhbinsky IA; Jiang X; Rosen BQ; Kajfez S; Eskandar EN; Gonzalez-Martinez J; Cash SS; Halgren E
    J Neurosci; 2022 Oct; 42(42):7931-7946. PubMed ID: 36041852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Local sleep spindles in the human thalamus.
    Bastuji H; Lamouroux P; Villalba M; Magnin M; Garcia-Larrea L
    J Physiol; 2020 Jun; 598(11):2109-2124. PubMed ID: 32118292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sleep Spindles Promote the Restructuring of Memory Representations in Ventromedial Prefrontal Cortex through Enhanced Hippocampal-Cortical Functional Connectivity.
    Cowan E; Liu A; Henin S; Kothare S; Devinsky O; Davachi L
    J Neurosci; 2020 Feb; 40(9):1909-1919. PubMed ID: 31959699
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling.
    Dehghani N; Cash SS; Chen CC; Hagler DJ; Huang M; Dale AM; Halgren E
    PLoS One; 2010 Jul; 5(7):e11454. PubMed ID: 20628643
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivation.
    Dijk DJ; Hayes B; Czeisler CA
    Brain Res; 1993 Oct; 626(1-2):190-9. PubMed ID: 8281430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.