These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27397622)

  • 21. A Unified Description of the Liquid Structure, Static and Dynamic Anomalies, and Criticality of TIP4P/2005 Water by a Hierarchical Two-State Model.
    Yu Z; Shi R; Tanaka H
    J Phys Chem B; 2023 Apr; 127(15):3452-3462. PubMed ID: 37042489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water from ambient to supercritical conditions with the AMOEBA model.
    Chipman DM
    J Phys Chem B; 2013 May; 117(17):5148-55. PubMed ID: 23593996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water.
    Raabe G; Sadus RJ
    J Chem Phys; 2012 Sep; 137(10):104512. PubMed ID: 22979879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer simulation investigation of the water-benzene interface in a broad range of thermodynamic States from ambient to supercritical conditions.
    Keresztúri A; Jedlovszky P
    J Phys Chem B; 2005 Sep; 109(35):16782-93. PubMed ID: 16853137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water polarization under thermal gradients.
    Bresme F; Lervik A; Bedeaux D; Kjelstrup S
    Phys Rev Lett; 2008 Jul; 101(2):020602. PubMed ID: 18764168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic, diffusional, and structural anomalies in rigid-body water models.
    Agarwal M; Alam MP; Chakravarty C
    J Phys Chem B; 2011 Jun; 115(21):6935-45. PubMed ID: 21553909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of polarizability in the interfacial thermal conductance at the gold-water interface.
    Bhattarai H; Newman KE; Gezelter JD
    J Chem Phys; 2020 Nov; 153(20):204703. PubMed ID: 33261479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determining the bulk viscosity of rigid water models.
    Fanourgakis GS; Medina JS; Prosmiti R
    J Phys Chem A; 2012 Mar; 116(10):2564-70. PubMed ID: 22352421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Density dependence of the entropy and the solvation shell structure in supercritical water via molecular dynamics simulation.
    Ma H
    J Chem Phys; 2012 Jun; 136(21):214501. PubMed ID: 22697552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study.
    Ma H; Ma J
    J Chem Phys; 2011 Aug; 135(5):054504. PubMed ID: 21823709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic properties of methane/water interface predicted by molecular dynamics simulations.
    Sakamaki R; Sum AK; Narumi T; Ohmura R; Yasuoka K
    J Chem Phys; 2011 Apr; 134(14):144702. PubMed ID: 21495767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomistic molecular dynamics simulations of CO₂ diffusivity in H₂O for a wide range of temperatures and pressures.
    Moultos OA; Tsimpanogiannis IN; Panagiotopoulos AZ; Economou IG
    J Phys Chem B; 2014 May; 118(20):5532-41. PubMed ID: 24749622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface properties of the polarizable Baranyai-Kiss water model.
    Kiss P; Darvas M; Baranyai A; Jedlovszky P
    J Chem Phys; 2012 Mar; 136(11):114706. PubMed ID: 22443789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal conductivity of supercooled water.
    Biddle JW; Holten V; Sengers JV; Anisimov MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042302. PubMed ID: 23679409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM; Vega C
    J Chem Phys; 2010 Aug; 133(6):064507. PubMed ID: 20707575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic properties of supercritical n-m Lennard-Jones fluids and isochoric and isobaric heat capacity maxima and minima.
    Mairhofer J; Sadus RJ
    J Chem Phys; 2013 Oct; 139(15):154503. PubMed ID: 24160523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.