These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 27397647)

  • 1. Copper-catalyzed retro-aldol reaction of β-hydroxy ketones or nitriles with aldehydes: chemo- and stereoselective access to (E)-enones and (E)-acrylonitriles.
    Zhang SL; Deng ZQ
    Org Biomol Chem; 2016 Jul; 14(30):7282-94. PubMed ID: 27397647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of quinolines and naphthyridines via catalytic retro-aldol reaction of β-hydroxyketones with ortho-aminobenzaldehydes or nicotinaldehydes.
    Zhang SL; Deng ZQ
    Org Biomol Chem; 2016 Sep; 14(38):8966-8970. PubMed ID: 27714212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C−C Activation by Retro-Aldol Reaction of Two β‑Hydroxy Carbonyl Compounds: Synergy with Pd-Catalyzed Cross-Coupling To Access Mono-α-arylated Ketones and Esters.
    Zhang SL; Yu ZL
    J Org Chem; 2016 Jan; 81(1):57-65. PubMed ID: 26642095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-Catalyzed Enantioselective Reductive Aldol Reaction of α,β-Unsaturated Carboxylic Acids to Alkyl Aryl Ketones: Silanes as Activator and Transient Protecting Group.
    Suzuki H; Yoneoka K; Kondo S; Matsuda T
    Chemistry; 2022 Feb; 28(9):e202104273. PubMed ID: 34967961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic asymmetric synthesis of alpha-alkylidene-beta-hydroxy esters via dynamic kinetic asymmetric transformation involving Ba-catalyzed direct aldol reaction.
    Yamaguchi A; Matsunaga S; Shibasaki M
    J Am Chem Soc; 2009 Aug; 131(31):10842-3. PubMed ID: 19722664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of Fluorinated Quaternary Stereogenic Centers through Catalytic Enantioselective Detrifluoroacetylative Aldol Reactions.
    Xie C; Wu L; Han J; Soloshonok VA; Pan Y
    Angew Chem Int Ed Engl; 2015 May; 54(20):6019-23. PubMed ID: 25808758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic enantioselective alkylative aldol reaction: efficient multicomponent assembly of dialkylzincs, allenic esters, and ketones toward highly functionalized delta-lactones with tetrasubstituted chiral centers.
    Oisaki K; Zhao D; Kanai M; Shibasaki M
    J Am Chem Soc; 2007 Jun; 129(23):7439-43. PubMed ID: 17503823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evans-Tishchenko coupling of heteroaryl aldehydes.
    Dorgan PD; Durrani J; Cases-Thomas MJ; Hulme AN
    J Org Chem; 2010 Nov; 75(21):7475-8. PubMed ID: 20929205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel pyrrolidine imide catalyzed direct formation of alpha,beta-unsaturated ketones from unmodified ketones and aldehydes.
    Wang W; Mei Y; Li H; Wang J
    Org Lett; 2005 Feb; 7(4):601-4. PubMed ID: 15704904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-catalyzed aldol-type addition of ketones to aromatic nitriles: a simple approach to enaminone synthesis.
    Yu X; Wang L; Feng X; Bao M; Yamamoto Y
    Chem Commun (Camb); 2013 Apr; 49(28):2885-7. PubMed ID: 23450129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemo- and Regioselective Catalytic Cross-Coupling Reaction of Ketones for the Synthesis of β, γ-Disubstituted β, γ-Unsaturated Ketones.
    Adhikari P; Bhattacharyya D; Deori K; Sarmah BK; Das A
    Chemistry; 2024 Mar; 30(15):e202303206. PubMed ID: 38140820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domino-hydroformylation/aldol condensation catalysis: highly selective synthesis of α,β-unsaturated aldehydes from olefins.
    Fang X; Jackstell R; Franke R; Beller M
    Chemistry; 2014 Oct; 20(41):13210-6. PubMed ID: 25179918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent synthesis of indoles, oxindoles, isocoumarins and isoquinolinones by general Pd-catalyzed retro-aldol/α-arylation.
    Zhang SL; Yu ZL
    Org Biomol Chem; 2016 Nov; 14(44):10511-10515. PubMed ID: 27766334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Quinolines via a Metal-Catalyzed Dehydrogenative N-Heterocyclization.
    Chelucci G; Porcheddu A
    Chem Rec; 2017 Feb; 17(2):200-216. PubMed ID: 27524555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct catalytic enantio- and diastereoselective aldol reaction of thioamides.
    Iwata M; Yazaki R; Chen IH; Sureshkumar D; Kumagai N; Shibasaki M
    J Am Chem Soc; 2011 Apr; 133(14):5554-60. PubMed ID: 21417332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly efficient organocatalyst for direct aldol reactions of ketones with aldehydes [corrected].
    Tang Z; Yang ZH; Chen XH; Cun LF; Mi AQ; Jiang YZ; Gong LZ
    J Am Chem Soc; 2005 Jun; 127(25):9285-9. PubMed ID: 15969611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Catalytic Retro-Aldol Reaction Using a Cation-Binding Catalyst: A Promising Route to Axially Chiral Biaryl Aldehydes.
    Paladhi S; Park SJ; Hwang IS; Park JH; Bae HY; Jadhav AP; Song CE
    Org Lett; 2023 Apr; 25(15):2713-2717. PubMed ID: 37052359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential reactions promoted by manganese: completely stereoselective synthesis of (E)-alpha,beta-unsaturated amides, ketones, aldehydes, and carboxylic acids.
    Concellón JM; Rodríguez-Solla H; Díaz P
    J Org Chem; 2007 Oct; 72(21):7974-9. PubMed ID: 17887705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium phenoxide-phosphine oxides as extremely active Lewis base catalysts for the Mukaiyama aldol reaction with ketones.
    Hatano M; Takagi E; Ishihara K
    Org Lett; 2007 Oct; 9(22):4527-30. PubMed ID: 17894505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures.
    Orazov M; Davis ME
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11777-82. PubMed ID: 26372958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.